Theory Notes

From Dr. GWF Drake's Research Group
Revision as of 16:53, 23 January 2013 by Drake (talk | contribs) (Small Corrections)
Jump to: navigation, search

Helium Calculations

[22m(21+22)Ze2r1Ze2r2+e2r212]ψ=Eψ

Define ρ=Zra0 where a0=2me2 (Bohr radius). Then

[22mZ2(me22)2(2ρ1+2ρ2)Z2e2a0ρ11Z2e2a0ρ12+e2a0Zρ112]ψ=Eψ

But 2m(me22)2=e2a0 is in atomic units (au) of energy. Therefore

[12(2ρ1+2ρ2)1ρ11ρ2+Z1ρ12]ψ=εψ where ε=Ea0Z2e2

The problem to be solved is thus [12(21+22)1r11r2+Z1r12]ψ=εψ

Pic1.jpg

The Hartree Fock Method

Assume that ψ(r1,r2) can be written in the form

ψ(r1,r2)=12[u1(r1)u2(r2)±u2(r1)u1(r2)]

for the 1S21S ground state

[12(21+22)1r11r2+Z1r12]ψ(r1,r2)=Eψ(r1,r2)

Substitute into <ψ|HE|ψ> and require this expression to be stationary with respect to arbitrary infinitesimal variations δu1 and δu2 in u1 and u2. ie

12<δu1(r1)u2(r2)±u2(r1)δu1(r2)|HE|u1(r1)u2(r2)±u2(r1)u1(r2)>

=δu1(r1)dr1{dr2u2(r2)(HE)[u1(r1)u2(r2)±u2(r1)u1(r2)]}

=0   for arbitrary δu1(r1).

Therefore {dr2}=0.

Similarly, the coefficient of δu2 would give

dr1u1(r1)(HE)[u1(r1)u2(r2)±u2(r1)u1(r2)]=0

Define

I12=dru1(r)u2(r),

I21=dru1(r)u2(r),

Hij=drui(121r)uj(r),

Gij(r)=drui(r)1|rr|uj(r)

Then the above equations become the pair of integro-differential equations

[H0E+H22+G22(r)]u1(r)=[I12(H0E)+H12+G12(r)]u2(r)

[H0E+H11+G11(r)]u2(r)=[I12(H0E)+H12+G12(r)]u1(r)

These must be solved self-consistently for the "constants" I12 and Hij and the function Gij(r).

The H.F. energy is E2.87a.u. while the exact energy is E=2.903724a.u.

The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations only describe how one electron moves in the average field provided by the other.

Configuration Interaction

Expand ψ(r1,r2)=C0u(s)1(r1)u(s)1(r2)+C1u(P)1(r1)u(P)1(r2)Υ01,1,0(ˆr1,ˆr2)+C2u(d)1(r1)u(d)2(r2)Υ02,2,0(ˆr1,ˆr2)+...± exchange where ΥMl1,l2,L(ˆr1,ˆr2)=Σm1,m2Υm1l1(r1)Υm2l2(r2)×<l1l2m1m2LM>.

This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to  107 a.u.

Hylleraas Coordinates

[E.A. Hylleraas, Z. Phys. 48,469(1928) and 54,347(1929)] suggested using the co-ordinates r1, r2 and r12 or equivalently

s=r1+r2,t=r1r2,u=r12

and writing the trial functions in the form

Ψ(r1,r2)=1+j+kNi,j,kci,j,kri+l11rj+l22rk12eαr1βr2YMl1,l2,L(ˆr1,ˆr2)±exchange

Diagonalizing H in this non-orthogonal basis set is equivalent to solving Eci,j,k=0 for fixed α and β.

The diagonalization must be repeated for different values of α and β in order to optimize the non-linear parameters.

Completeness

The completeness of the above basis set can be shown by first writing r212=r21+r222r1r2cos(Θ12) and cos(Θ12)=4π31m=1Yml(θ1,φ1)Yml(θ2,φ2) consider first S-states. The r012 terms are like the ss terms in a CI calculation. The r212 terms bring in p-p type contributions, and the higher powers bring in d-d, f-f etc type terms. In general Pl(cos(θ12)=4π2l+1lm=lYml(θ1,φ1)Yml(θ2,φ2)

For P-states, one would have similarly

r012        (sp)Pr212        (pd)Pr412        (df)P          

For D-states

r012        (sp)D        (pp)Dr212        (pd)D        (dd)Dr412        (df)D        (ff)D                         

In this case, since there are two lowest-order couplings to form a D-state, both must be present in the basis set. ie

Ψ(r2,r2)=cijkri1rj+22rk12eαr1βr2YM022(ˆr1,ˆr2)+dijkri+11rj+12r12eαr1βr2YM112(ˆr1,ˆr2)

For F-states, one would need (sf)F and (pd)F terms.

For G-states, one would need (sg)G, (pf)G and (dd)G terms.

Completeness of the radial functions can be proven by considering the Stern-Liouville problem

(122λrsE)ψ(r)=0 or (121r2(r2r)l(l+1)2r2λrE)u(r)=0. For fixed E and variable λ (nuclear charge).

The eigenvalues are λn=(E/En)1/2, where En=12n2

Pic2.jpg

unl(r)=1(2l+1)!((n+l)!(nl1)2!)1/2(2α)3/2eαr,


with α=(2E)1/2 and nl+1.


Unlike the hydrogen spectrum, which has both a discrete part for E<0 and a continuous part for E>0, this forms an entirely discrete set of finite polynomials, called Sturmian functions. They are orthogonal with respect to the potential

-ie 0r2drunl(r)1runl(r)=δn,n


Since they become complete in the limit n, this assures the completeness of the variational basis set.

[see B Klahn and W.A. Bingel Theo. Chim. Acta (Berlin) 44,9 and 27(1977)].

Solutions of the Eigenvalue Problem

For convenience, write


Ψ(r1,r2)=Nm=1cmφm

where m=mth combinations of i,j,k

φijk=ri1rj2rk12eαr1βr2YMl1,l2,L(ˆr1,ˆr2)±exchange.


(cos(θ)sin(θ)sin(θ)cos(θ))(H11H12H12H22)(cos(θ)sin(θ)sin(θ)cos(θ))=(cH11+sH12cH12+sH22sH11+cH12sH12+cH22)(cssc)=(c2H11+s2H22+2csH12(c2s2)H12+cs(H22H11)(c2s2)H12+cs(H22H11)s2H11+c2H222csH12)


Therefore (cos2(θ)sin2(θ))H12=cos(θ)sin(θ)(H11H22) and tan(2θ)=2H12H11H22

ie

cos(θ)=(r+ω2r)1/2,sin(θ)=sgn(H12)(rω2r)1/2

where

ω=H22H11r=(ω2+4H212)1/2E1=12(H11+H22r)E2=12(H11+H22+r)

Brute Force Method

-Gives all the eigenvalues and eigenvectors, but it is slow.

-First orthonormalize the basis set - ie form linear combinations

Φm=nφnRnm such that <Φm|Φn>=δm,n. This can be done by finding an orthogonal tranformation, T, such that

TTOT=I=( I1 000  I20        I3 00  0  0 );  Omn=<φm|φn> and then applying a scale change matrix S=(1I1/210001I1/220  1I1/2300 0 0 )=ST

Then STTTOTS=1. ie RTOR=1 with R=TS.

If H is the matrix with elements Hmn=<φm|φn>, then H expressed in the Φm basis set is H=RTHR.

We next diagonalize H by finding an orthogonal transformation W such that WTHW=λ=(λ1000 λ20       00 λN)

The q'th eigenvector is

Ψ(q)=nΦnWn,q=n,nφnRn,nWn,q. ie. c(q)nprime=nRnnWn,q.

The Power Method

-Based on the observation that if H has one eigenvalue, λM, much bigger than all the rest, and χ=(a1a2) is an arbitrary starting vector, then χ=qxqΨ(q).

(H)nχ=qxqλnqΨ(q)xMλnMΨ(M) provided xM0.

To pick out the eigenvector correspondng to any eigenvalue, with the original problem in the form

HΨ=λOΨ (Hλ)qO)Ψ=(λλq)OΨ

Therefore, GΨ=1λλqΨ where G=(HλqO)1O with eigenvalues 1λnλq.

By picking λq close to any one of the λn, say λn, then 1λnλq is much larger for n=n than for any other value. The sequence is then

χ1=Gχχ2=Gχ1χ3=Gχ2

until the ratios of components in χn stop changing.

- To avoid matrix inversion and multiplication, note that the sequence is equivalent to

Fχn=(λλq)Oχn1

where F=HλqO. The factor of (λλq) can be dropped because this only affects the normalization of χn. To find χn, solve Fχn=Oχn1 (N equations in N unknowns). Then

λ=<χn|H|χn><χn|χn>

Matrix Elements of H

H=122112221r11r2+Z1r12

Taking r1,r2 and r12 as independent variables,

21=1r21r1(r21r1)+1r212r12(r212r12)l1(l1+1)r21+2(r1r2cos(θ))1r122r1r2(1r2)1rr

where

Pic3.jpg

The complete set of 6 independent variables is r1,r2,r12,θ1,φ1,χ.

If r12 were not an independent variable, then one could take the column element to be dτ=r21dr1sin(θ1)dθ1dφ1r22dr2sin(θ2)dθ2dφ2.

However, θ2 and φ2 are no longer independent variables. To eliminate them, take the point r1 as the

origin of a new polar co-ordinate system, and write dτ=r21dr1sin(θ1)dθ1dφ1r212dr12sin(ψ)dψdχ

and use r22=r21+r212+2r1r12cos(ψ).


Then for fixed r1 and r12, 2r2dr2=2r1r12sin(ψ)dψ


Thus dτ=r1dr1r2dr2r12dr12sin(θ1)dθ1dφ1dχ


The basic type of integral to be calculated is


I(l1,m1,l2,m2;R)=sin(θ1)dθ1dφ1dχYm1l1(θ1,φ1)Ym2l2(θ2,φ2)×r1dr1r2dr2r12dr12R(r1,r2,r12)


Consider first the angular integral. Ym2l2(θ2,φ2) can be expressed in terms of the independent variables θ1,φ1,χ by use of the rotation matrix relation


Ym2l2(θ2,φ2)=mD(l2)m2,m(φ1,θ1,χ)Yml2(θ,φ)


where θ,φ are the polar angles of r2 relative to r1. The angular integral is then


Iang=2π0dχ2π0dφ1π0sin(θ1)d=theta1Ym1l1(θ1,φ1)×mD(l2)m2,m(φ1,θ1,χ)Yml2(θ,φ)


Use

Ym1l1(θ1,φ1)=2l1+14πD(l1)m1,0(φ1,θ1,χ)


together with the orthogonality property of the rotation matrices (Brink and Satchler, p 147)

D(j)m,mD(J)M,Msin(θ1)dθ1dφ1dχ=8π22j+1δjJδmMδmM


to obtain


Iang=2l1+14π8π22l1+1δl1,l2δm1,m2Y0l2(θ,φ)=2πδl1,l2δm1,m2Pl2(cosθ)


since


Y0l2(θ,φ)=2l1+14πPl2(cos(θ)).


Note that Pl2(cosθ) is just a short hand expression for a radial function because cosθ=r21+r22r2122r1r2.


The original integral is thus

I(l1,m1,l2,m2;R)=2πδl1l2δm1m2×0r1dr10r2dr2r1+r2|r1r2|r12dr12R(r1,r2,r12)Pl2(cosθ)


where cosθ=(r21+r22r212)/(2r1r2) is a purely radial function.


The above would become quite complicated for large l2 because Pl2(cosθ) contains terms up to (cosθ)l2. However, recursion relations exist which allow any integral containing Pl(cosθ) in terms of those containing just P0(cosθ)=1 and P1(cosθ)=cosθ.

Radial Integrals and Recursion Relations

- The basic radial integral is I0(a,b,c)=0r1dr1r1r2dr2r1+r2r2r1r12dr12ra1rb2rc12eαr1βr2+0r2dr2r2r1dr1r1+r2r1r2r12dr12ra1rb2rc12eαr1βr2=2c+2[(c+1)/2]i=0(c+22i+1){q!βq+1(α+β)P+1j=0q(p+j)!j!(βα+β)j+q!αq+1(α+β)p+1qj=0(p+j)!j!(αα+β)j}

where p=a+2i|2p=b+2i+2q=b+c2i+2q=a+c2i+2

The above applies for a,b 2c1. [x] means greatest integer in x.

Then I1(a,b,c)=dτrra1rb2rc12eαr1βr2P1(cosθ)=12(I0(a+1,b1,c)+I0(a1,b+1,c)I0(a1,b1,c+2)).


The Radial Recursion Relation

Recall that the full integral is I(l1m1,l2m2;R)=2πδl1l2δm1m2Il2(R) where Il2(R)=dτrR(r1,r2,r12)Pl2(cosθ).

To obtain the recursion relation, use

Pl(x)=[Pl+1(x)Pl1(x)]2l+1 with Pl+1(x)=ddxPl+1(x).

Here x=cosθ and    ddcosθ=dr12dcosθddr12=r1r2r12ddr12.

Then,   Il(R)=dτrRr1r2r12ddr12[Pl+1(cosθ)Pl1(cosθ)]2l+1.

The r12 part of the integral is   r1+r2|r1r2|r12dr12Rr1r2r12ddr12[Pl+1Pl1]=Rr1r2[Pl+1Pl1]r1+r2|r1r2|r1+r2|r1r2|r12dr12(ddr12R)r1r2r12[Pl+1Pl1]2l+1

The integrated term vanishes because   cosθ=r21+r22r2122r1r2   =1when  r212=(r1+r2)2=  1when  r212=(r1r2)2 and Pl(1)=1,   Pl(1)=(1)l.

Thus,   Il+1(r1r2r12R)=(2l+1)Il(R)Il1(r1r2r12R)

If R=ra11rb12rc+212eαr1βr2, then  Il+1(ra1rb2rc12)=2l+1c+2Il(ra11rb22rc+212)+Il1(ra1rb2rc12)

For the case c=-2, take  R=ra11rb12lnr12eαr1βr2. Then  Il+1(ra1rb2rc12)=Il(ra11rb12lnr12)(2l+1)Il1(ra1rb2r212). This allows all Il integrals to be calculated from tables of I0 and I1 integrals.

The General Integral

-The above results fro the angular and raidal integrals can now be combined into a general formula for integrals of the type I=dr1dr2R1YMl1l2L(ˆr1,ˆr2)TQk1k2K(r1,r2)R2YMlll2L(ˆr1,ˆr2)

where YMl1l2L(ˆr1,ˆr2)=m1,m2<l1l2m1m2|LM>Ym1l1(ˆr1)Ym2l2(ˆr2) and TQk1k2K(r1,r2)=q1,q2<k1k2q1q2|KQ>Yq1k1(ˆr1)Yq2k2(ˆr2)

The basic idea is to make repeated use of the formula Ym1l1(ˆr1)Ym2l2(ˆr2)=lm((2l1+1)(2l2+1)(2l+1)4π)1/2 ×(l1l2lm1m2m)(l1l2l000)Yml(ˆr1)

where Ym(ˆr)=(1)mYml(ˆr) and (l1l2lm1m2m)=(1)l1l2m(2l+1)1/2(l1l2m1m2|l,m) is a 3j symbol.

In particular, write

Ym2l1(ˆr1)Yq1k1(ˆr1)Ym1l1(ˆr1)=ΛM()YMΛ(ˆr1)         λ1μ1Yμ1λ1(ˆr1)Yml2(ˆr2)Yq2k2(ˆr2)Ym2l2(ˆr2)=ΛM()YMΛ(ˆr2)         λ2μ2Yμ2λ2(ˆr2)

The angular integral then gives a factor of 2πδΛ,ΛδM,MPΛ(cosθ12). The total integral therefore reduces to the form I=λCΛIΛ(R1R2), where cΛ=λ1λ2Cλ1,λ2,Λ.

Graphical Representation

GraphRep1.jpg

Matrix Elements of H

Recall that H=122112221r11r2+Z1r12.

Consider matrix elements of 21=1r12(r1)+1r2(r)(ly1)2r21+2(r1r2cosθ)r2r1r2(y1r2)1rr. where rr12 and cosθcosθ12.

Also ˆy1r1y1 operates only on the spherical harmonic part of the wavefunction.

A general matrix element is <ra1rb2rc12eαr1 betar2YMl1l2L(ˆr1,ˆr2)|21|ra1rb2rc12eαr1βr2YMl1l2L(ˆr1,ˆr2)>.

Since 21 is rotationally invariant, this vanishes unless L=L, M=M. Also 21 is Hermitean, so that the result must be the same whether it operates to the right or left, even though the results look very different. In fact, requiring the results to be the same yields some interesting and useful integral identites as follows:

Put F=FYMl1l2L(ˆr1,^r2), and F=ra1rb2rc12eαr1βr2.

Then 21F=[1r21[a(a+1)l1(l1+1)]+c(c+1)r2+α22α(a+1)r1+2(r1r2cosθ)r1r2c[aαr1]2cr2(ˆy1ˆr2)r2r1]F

and

<F|21|F>=ΛdτrFCΛ(1)PΛ(cosθ){1r21[a(a+1)l1(l1+1)]2α(a+1)r1+c(c+1)r2+α2+2(r2r2cosθ)r1r2c(aαr1)}F+ΛdτrFCΛ(ˆy1ˆr2)PΛ(cosθ)(2cr2r1r2)F

where dτr=0r1dr1infty0r2dr2r1+r2|r1r2|rdr.


For brevity, let the sum over Λ and the raidal integrations be understood, and let (21) stand for the terms which appear in the integrand. Then operating to the right gives

(21)R=1r21[a(a+1)l1(l1+1)]+c(c+1)r2+α22α(a+1)r1+2(r1r2cosθ)r1r62c(aαr1)2cr2r1r2(ˆy1ˆr2).

Operating to the left gives

(21)L=1r21[a(a+1)l1(l1+1)]+c(c+1)r2+α22α(a+1)r1+2(r1r2cosθ)r1r2c(aαr1)2cr2r1r2(ˆy1ˆr2).

Now put a+=a+a,ˆ+1=ˆy1+ˆy1 and a=aa ˆ1=ˆy1ˆy1 etc.

and substitute a=a+a, c=c+c, and α=α+α in (21)L. If a+, c+ and α+ are held fixed, then the equation (21)R=(21)L must be true for arbitrary a, c, and α. Their coefficients must thus vanish.

This yields the integral relations (r1r2cosθ)r1r2=1c+((a++1)r21+α+r1) from the coef. of a, and (r1r2cosθ)(a+α+r1)r1r2=r2r1r2(ˆr2ˆ+1)(c++1)r2 from the coef. of c. The coef. of α gives an equation equivalant to (I).

Furthermore, if can be show that (see problem) Λdτrrcr2CΛ(ˆr2ˆy1)PΛ(cosθ)=Λdτrrccr1r2CΛ(1)PΛ(cosθ)×(l1(l1+1)l1(l1+1)Λ(Λ+1)2)

and similarly for (ˆr2ˆy1) with l1 and l1 interchangable, then it follows that rc+r2(ˆr2ˆ+1)=rc+c+r1r2Λ(Λ+1)

and rc+r2(ˆr2ˆ1)=rc+c+r1r2[l1(l1+1)l1(l1+1)] where equality applies after integration and summation over Λ.

Thus (II) becomes (r1r2cosθ)(a+α+r1)r1r2=Λ(Λ+1)c+r21(c++1)r2.

Problem

Prove the integral relation   Λdτrf(r1,r2)1r(ddrq(r))CΛ(ˆr2ˆy1)PΛ(cosθ)=Λdτrf(r1,r2)r1,r2q(r)CΛ(1)PΛ(cosθ)×(l1(l1+1)l1(l1+1)Λ(Λ+1)2).

where CΛ(1) are the angular coefficients from the overlap integral dΩYMl1l2L(ˆr1,ˆr2)=ΛCΛ(1)PΛ(cosθ12).

Hint: Use the fact that l21 is Hermitean so that dτ(l21Y)q(r)Y=dτYl21(q(r)Y) with  l1=1ir1×1.

It is also useful to use   (cos2θ1)PL(cosθ)=L(L1)(2L1)(2L+1)PL2(cosθ)=2(L2+L1)(2L1)(2L+3)PL(cosθ)+(L+1)(L+2)(2L+1)(2L+3)PL+2(cosθ)

together with the integral recursion relation IL+1(1rddrq(r))=(2L+1)IL(1r1r2q(r))+IL1(1rddrq(r))

Of course l21YMl1l2L(ˆr1,ˆr2)=l1(l1+1)YMl1l2L(ˆr1,ˆr2).

General Hermitean Property

Each combination of terms of the form <f>R=a2f1af2+abf3+b2f4+bf5+af6y1+bf7y2+f8(y) can be rewritten   <f>L=(a+a)2f1+(a+a)f2+(a+a)(b+b)f3+(b+b)2f4+(b+b)f5+(a+a)f6y1+(b+b)f7y2+f8)y

Since these must be equal for arbitrary a and b, a2+f1+a+f2++b+f3+b+f4+b+f5+a+f6y1+b+f7y2+f8(y)f8(y)=0

Adding the corresponding expresssion with y and $y^\prime$ interchanged yields a2+f1+a+f2+a+b+f3+b2+f4+b+f5+12a+f6+1+12b+f7+2=0

Subtracting gives f8(y)f8(y)=12[a+f61+b+f72] a[2a+f12f2b+f3f6=nabla+1]=0 b[2b+f42f5a+f3f7+2]=0

Adding the two forms gives

<f>R+<f>L=12(a2++a2)f1+a+f2+12(a+b++ab)f3 +12(b2++b2)f4+b+f5+12f6(a++1+a1) +12(b++2+b2)+f8(y)+f8(y)

Subtracting x2×(I) gives

  <f>R+<f>L=12[(1x)a2++a2]f1+(1x2)a+f2+12[(1x)a+b++ab]f3+12[(1x)b2++b2]f4+(1x2)f5b++12f6[(1x2)a++1+a1]+12[(1x2)b++2+b2]+f8(y)+f8(y)

If x=1, <f>R+<f>L=12[a2f1+a+f2+abf3+b2f4+b+f5+(12a++1+a1)f6+(12b++2+b2)f7]+f8(y)+f8(y)

The General Hermitean Property for arbitrary x gives   21=14{1r21[(1x)a2++a2+2(1x2)a+2[l1(l1+1)+l1(l1+1)]2r1[(1x)α+a++αa+2(1x2)α+]+(1x)α2++α2]+2(r1r2cosθ)r1r2[(1x)(a+α+r1)c++(aαr2)c]2r2r1r2[(1x2)c+ˆr2ˆ+1+cˆr2ˆ1]+(1x)c2++c2+2(1x2)c+r2}.

Use \begin{eqnarray}\ \ \frac{-2r_2}{r_1r^2}[(1-\frac{x}{2})c_+\hat{r}_2\hat{\nabla}_1^++c_-\hat{r}_2\hat{\nabla}_1^-]=\frac{2}{r_1^2}\left[(1-\frac{x}{2})\Lambda(\Lambda+1)-\frac{c_-}{c_+}[l_1^\prime(l_1^\prime+1)+l_1(l_1+1)]\right]\end{eqnarray},

\begin{eqnarray} \frac{2(r_1-r_2\cos\theta)}{r_1r^2}(a_--\alpha_-r_1)c_- = 2\frac{c_-}{c_+}\left[\frac{-1}{r_1^2}[a_-(a_++1)]+\frac{1}{r_1}[a_-\alpha_++\alpha_-(a_++2)]-\alpha_-\alpha_+\right]\nonumber \end{eqnarray},

and \begin{eqnarray}\ \ \frac{2(r_1-r_2\cos\theta)}{r_1r^2}(a_+-\alpha_+r_1)c_+ = 2\left[-\frac{1}{r_1^2}[a_+(a_++1)]+\frac{1}{r_1}[a_+\alpha_++\alpha_+(a_++2)]-\alpha_+^2\right] \end{eqnarray}.

Substituting into \nabla_1^2 gives

\begin{eqnarray} \nabla^2_1 = \frac{1}{4}\{\frac{1}{r_1^2}[-(1-x)a_+^2 + a_-^2 +xa_+ + 2(1-\frac{x}{2})\Lambda(\Lambda+1)\nonumber\\ -2l_1(l_1+1)(1-\frac{c_-}{c_+}) - 2l_1^\prime(l_1^\prime+1)(1+\frac{c_-}{c_+})-\frac{2c_-a_-}{c_+}(a_++1)]\nonumber\\ - \frac{2}{r_1}\left[-(1-x)\alpha_+(a_++2)+\alpha_-a_-+2(1-\frac{x}{2})\alpha_+ -\frac{c_-}{c_+}[a_-\alpha_++\alpha_-(a_++2)]\right]\nonumber\\ -(1-x)\alpha_+^2+\alpha_-^2-2\frac{c_-}{c_+}\alpha_-\alpha_+ +\frac{1}{r^2}\left[(1-x)c_+^2+c_-^2+2(1-\frac{x}{2})c_+\right]\}\nonumber \end{eqnarray}

This has the form \nabla_1^2 = \frac{1}{4}\left[\frac{A_1}{r_1^2}+\frac{B_1}{r_1}+\frac{C_1}{r^2}+D_1\right] with

\begin{array}{ccc} A_1=-(1-x)a_+^2+a_-^2 +xa_++2(1-\frac{x}{2})\Lambda(\Lambda+1)-2l_1(l_1+1)(1-\frac{c_-}{c_+})\ -2l_1^\prime(l_1^\prime+1)(1+\frac{c_-}{c_+})-\frac{2c_-a_-}{c_+}(a_++1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array}

B_1 = 2\left[(1-x)\alpha_+(a_++2)-\alpha_-a_--2(1-\frac{x}{2})\alpha_++\frac{c_-}{c_+}[a_-\alpha_++\alpha_(a_++2)]\right]

C_1 = (1-x)c_+^2+ c_-^2 +2(1-\frac{x}{2})c_+

D_1 = -1(1-x)\alpha_+^2 +\alpha_-^2 - 2\frac{c_-}{c_+}\alpha_-\alpha_+

The complete Hamiltonian is then (in Z-scaled a.u.)

\begin{eqnarray} H =-\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2 -\frac{1}{r_1} -\frac{1}{r_2} +\frac{Z^{-1}}{r}\nonumber\\ = -\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2 -\frac{1}{r_1} -\frac{Z-1}{Zr_2}+Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right)\nonumber\\ \ =-\frac{1}{8}\left[\frac{A_1}{r_1^2}+\frac{B_1+8}{r_1}+\frac{C_1}{r^2}+D_1+D_2 +\frac{A_2}{r_2^2} + \frac{B_2 + 8(Z-1)/Z}{r_2}+\frac{C_2}{r^2}\right]\nonumber + Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right)\nonumber \end{eqnarray}

The screened hydrogenic energy is \begin{eqnarray} E_{SH}=-\frac{1}{2}\left[\frac{1}{n_1^2}+ \left(\frac{Z-1}{Z}\right)^2\frac{1}{n_2^2}\right] \end{eqnarray} so that

\begin{eqnarray} H-E_{SH} &=& -\frac{1}{8}[ \frac{A_1}{r_1^2}+\frac{B_1+8}{r_1}+\frac{C_1}{r^2} + D_1 + D_2 -\frac{4}{n_1^2} -\left(\frac{Z-1}{Z}\right)^2\frac{4}{n_2^2}\nonumber +\frac{A_2}{r_2}+\frac{B_2+8(Z-1)/Z}{r_2}+\frac{C_2}{r^2}] + Z^{-1}\left(\frac{1}{r} -\frac{1}{r_2}\right)\nonumber \end{eqnarray}

Optimization of Non-linear Parameters

- The traditional method of performing Hylleraas calculations is to write the basis set in the form

\Psi = \sum_{i,j,k}c_{i,j,k}\varphi_{i,j,k}(\alpha,\beta)\pm exchange

with

\varphi_{i,j,k}(\alpha,\beta) = r_1^ir_2^jr_{12}^ke^{-\alpha r_1 - \beta r_2}\mathcal{Y}^M_{l_1l_2L}.

The usual procedure is to set \alpha = Z so that it represents the inner 1s electron, and then to vary \beta so as to minimize the energy.

OptNon.jpg

Since \beta appears in \Psi as a non-linear parameter, the enitre calculation must be repeated for each value of \beta. However, the minimum becomes progressively smaller as the basis set is enlarged.

OptNon2.jpg

  • Difficulties

1. If the basis set is constructed so that i +j +j \leq N, the the number of terms is (N+1)(N+2)(N+3)/6 N=14 already gives 680 terms and an accuracy of about 1 part in 10^10 for low-lying states. A substantial improvement in accuracy would require much larger basis sets, together with multiple precision arithmetic to avoid loss of significiant figures when high powers are incluuded.

2. The accuracy rapidly deteriorates as one goes to more highly excited states - about 1 significant figure is lost each time the principle quantum number is increased.

  • Cure

We have found that writing basis sets in the form \begin{eqnarray} \Psi &=& \sum_{i,j,k}\left(c^{(1)}_{i,j,k}\varphi_{ijk}(\alpha_1\beta_1) + c_{ijk}^{(2)}\varphi_{ijk}(\alpha_2\beta_2)\right) \pm exchange \nonumber\\ &=& \psi({\bf r}_1,{\bf r}_2) \pm \psi({\bf r}_2,{\bf r}_1)\nonumber \end{eqnarray} so that each combination of powers is includd twice with different non-linear parameters gives a dramatic improvement in accuracy ffor basis sets of about the same total size.

However, the optimization of the non-linear parameters is now much more difficult, and an automated procedure is needed.

If E = \frac{<\Psi|H|\Psi>}{<\Psi|\Psi>},

then in <\Psi|\Psi> = 1, \frac{\partial E}{\partial\alpha_t} = -2 <\Psi|H-E|r_1\psi({\bf r}_1,{\bf r}_2;\alpha_t)\pm r_21\psi({\bf r}_2,{\bf r}_1;\alpha_t)> where \psi({\bf r}_1,{\bf r}_2;\alpha_t) = \sum_{i,j,k}c_{ijk}^{(t)}\varphi_{ijk}(\alpha_t\beta_t)

  • Problem

1. Prove the above.

2. Prove that there is no contribution from the implicit dependence of c_{ijk}^{(t)} on \alpha_t if the linear parameters have been optimized.

The Screened Hydrogenic Term

If the Hamiltonian is written in the form (in Z-scaled a.u.) \begin{eqnarray}\ H = H_0({\bf r}_1,Z) + H_0({\bf r}_2,Z-1) + Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right) \end{eqnarray} with \ H_0({\bf r}_1,Z) = -\frac{1}{2}\nabla_1^2 - \frac{1}{r_1}\nonumber and H_0({\bf r}_2,Z-1) = -\frac{1}{2}\nabla_2^2 - \frac{Z-1}Z{r_2}\nonumber , then the eigenvectors of H_0({\bf r},Z) +H_0({\bf r}_2,Z-1) are products of hydrogenic orbitals \Psi_0=\psi_0(1s,Z)\psi_0(nl,Z-1) and the eigenvalue is \begin{eqnarray} E_{SH} = \left[-\frac{1}{2} - \left(\frac{Z-1}{Z}\right)^2\frac{1}{2n^2}\right]Z^2 a.u. \end{eqnarray} called the screened hydrogenic eigenvalue. From highly excited states, E_{SH} and \Psi_0are already excellent approximations.

For example, for the 1s8d states, the energies are

\begin{eqnarray}\\ E(1s8d^1D)= -2.00781651256381 a.u.\nonumber\\ E(1s8d^3D)= - 2.00781793471171 a.u.\nonumber\\ E_{SH} = -2.0078125\nonumber \end{eqnarray}

It is therefore advantageousto include the screened hydrogenic terms in the basis set so that the complete trial function becomes \Psi = c_0\Psi_0 + \sum_{ijk}\left[c_{ijk}^{(1)}\varphi_{ijk}(\alpha_1,\beta_1)+c_{ijk}^{(2)}\varphi(\alpha_2,\beta_2)\right]\pm exchange

Also, the variational principal can be re-expressed in the form \begin{eqnarray} E= E_{SH}+\frac{<\Psi|H-E_{SH}|\Psi>}{<\Psi|\Psi>} \end{eqnarray} so that the E_{SH} term can be cancelled analytically from the matrix elements.

For example <\Psi_0|H-E_{SH}|\Psi_0> = 0

and <\varphi_{ijk}|H-E_{SH}|\Psi_0> = Z^{-1}<\varphi_{ijk}|\frac{1}{r}-\frac{1}{r_2}|\Psi_0>

Recall that \begin{eqnarray}\ \ I_0(a,b,c) = \frac{2}{c+2}\sum^{[c+1]/2}_{i=0}\left(\begin{array}{c} c+2\\ 2i+1 \end{array}\right) \left[f(p,q;\beta) + f(p^\prime,q^\prime;\alpha)\right] \end{eqnarray} where

\begin{eqnarray} f(p,q;x) = \frac{q!}{x^{q+1}(\alpha+\beta)^{p+1}}\sum^p_{j=0}\frac{(p+j)!}{j!}\left(\frac{x}{\alpha+\beta}\right)^j \end{eqnarray}

\begin{array}{cc} p=a+2i+2 & p^\prime = b+2i+2\\ q= b+c-2i+2 & q^\prime =a+c-2i+2 \end{array}

If \beta\ll\alpha, the f(p,q;\beta)\gg f(p^\prime,q^\prime;\alpha) and the i=0 term is the dominant contribution to f(p,q;\beta). However, since this term depends only on the sum of powers b+c for r_2, it cancels exactly from the matrix element of \begin{eqnarray}\frac{1}{r_12} - \frac{1}{r_2}\end{eqnarray} and can therefore be omitted in the calculations of integrands, there by saving many significant figures. This is especially valuable when b+c is large and a is small.

Small Corrections

  • Mass Polarization

If the nuclear mass is not taken to be infinite, then the Hamiltonian is \begin{eqnarray}\ \ H = \frac{P_N^2}{2M} + \sum_{i=1}\frac{p_i^2}{2m} + V \end{eqnarray}

SmallCor.jpg

where M =M_A-nm is the nuclear mass and m is the electron mass.

Change variables to the C of M \begin{eqnarray} {\bf R} = \frac{1}{M+nm}\left[M{\bf r}_N + m({\bf r}_1 + {\bf r}_2 + \ldots)\right] \end{eqnarray}

and relative variables

{\bf s}_i = {\bf r}_i - {\bf r}_N.

Then

\begin{eqnarray}\ \ \ \ \ H = \frac{1}{2(M+nm)}{\bf p}_R^2+\frac{1}{2m}\sum_{i=1}^n{\bf p}_{s_i}^2 +\frac{1}{2M}\sum_{i,k}{\bf p}_{s_i}\cdot {\bf p}_{s_k} + V({\bf s}_1, {\bf s}_2, \ldots)\nonumber = \frac{1}{M+nm}{\bf p}_R^2+\frac{1}{2\mu}\sum_{i=1}^n{\bf p}_{s_i}^2+\frac{1}{2M}\sum_{i\neq k}{\bf p}_{s_i}\cdot {\bf p}_{s_k}+V({\bf s}_1, {\bf s}_2, \ldots)\nonumber \end{eqnarray}

where \begin{eqnarray} \mu = \left(\frac{1}{M} + \frac{1}{m}\right)^{-1} \end{eqnarray}

If n=2, the Schroedinger equation is \begin{eqnarray}\ \ \ \left[ -\frac{\hbar^2}{2\mu}(\nabla^2_{s_1}+ \nabla^2_{s_2}) - \frac{\hbar^2}{M}\nabla_{s_1}\nabla_{s_2}-\frac{Ze^2}{s_1}-\frac{Ze^2}{s_2}+\frac{e^2}{s_12}\right]\psi = E\psi \end{eqnarray}.

Define the reduced mass Bohr radius \begin{eqnarray} a_\mu = \frac{hbar^2}{\mu e^2} = \frac{m}{\mu}a_0 \end{eqnarray} and

\begin{eqnarray} \rho_i = \frac{Zs_i}{a_\mu}\nonumber\\ \varepsilon = \frac{E}{Z^2(e^2/a_\mu)}\nonumber \end{eqnarray}

The Schroedinger equation then becomes \begin{eqnarray}\ \ \ \left[ -\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2})-\frac{\mu}{M}\vec{\nabla}_{\rho_1}\cdot\vec{\nabla}_{\rho_2} - \frac{1}{\rho_1}-\frac{1}{\rho_2}+\frac{Z^{-1}}{\rho_{12}}\right]\psi = \varepsilon \psi \end{eqnarray}

The effects of finite meass are thus

1. A reduced mass correction to all energy levels of (e^2/a\mu)/(e^2/a_0) = \mu/m, ie. \begin{eqnarray} E_M=\frac{\mu}{m}E_\infty \end{eqnarray}

2. A specific mass shift given in first order perturbation theory by \begin{eqnarray} \Delta\varepsilon = -\frac{\mu}{M}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi> \end{eqnarray} or

\begin{eqnarray} \Delta\varepsilon = -\frac{\mu}{M}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi>\frac{e^2}{a_\mu}\nonumber\\ = -\frac{\mu^2}{mM}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi>\frac{e^2}{a_0}\nonumber \end{eqnarray}

Since \nabla_{\rho_1}\cdot\nabla_{\rho_2} has the same angular properties as {\bf\rho}_1 \cdot {\bf\rho}_2, the operator is like the product of two dipole operators. For product type wave functions of the form \psi = \psi(1s)\psi(nl) \pm exchange the matrix element vanishes for all but p-states.