Theory Notes
Contents
[hide]- 1 Helium Calculations
- 2 The Hartree Fock Method
- 3 Configuration Interaction
- 4 Hylleraas Coordinates
- 5 Completeness
- 6 Solutions of the Eigenvalue Problem
- 7 Matrix Elements of H
- 8 Radial Integrals and Recursion Relations
- 9 Graphical Representation
- 10 Matrix Elements of H
- 11 General Hermitean Property
- 12 Optimization of Non-linear Parameters
- 13 The Screened Hydrogenic Term
- 14 Small Corrections
Helium Calculations
Define \begin{eqnarray} \rho = \frac{Zr}{a_0}\end{eqnarray} where \begin{eqnarray} a_0 = \frac{\hbar^2}{me^2}\end{eqnarray} (Bohr radius). Then
\begin{eqnarray}[-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\end{eqnarray}
But \begin{eqnarray}\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\end{eqnarray} is in atomic units (au) of energy. Therefore
\begin{eqnarray} [-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\end{eqnarray} where \begin{eqnarray}\varepsilon = \frac{Ea_0}{Z^2e^2}\end{eqnarray}
The problem to be solved is thus \begin{eqnarray}[\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\end{eqnarray}
The Hartree Fock Method
Assume that \psi({\bf r}_1,{\bf r}_2) can be written in the form
\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber
for the 1S^21S ground state
[-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber
Substitute into <\psi|H-E|\psi> and require this expression to be stationary with respect to arbitrary infinitesimal variations \delta u_1 and \delta u_2 in u_1 and u_2. ie
\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2(r_1)\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber
=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber
= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber
Therefore \{\int d{\bf r}_2 \ldots \} = 0.
Similarly, the coefficient of \delta u_2 would give
\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)] = 0\nonumber
Define
I_{12} = \int dru_1(r)u_2(r), \nonumber
I_{21} = \int dru_1(r)u_2(r), \nonumber
H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber
G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber
Then the above equations become the pair of integro-differential equations
[ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber
[H_0-E+H_{11}+G_{11}(r)]u_2(r) = \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber
These must be solved self-consistently for the "constants" I_{12} and H_{ij} and the function G_{ij}(r).
The H.F. energy is E \simeq -2.87\cdots a.u. while the exact energy is E = -2.903724\cdots a.u.
The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations only describe how one electron moves in the average field provided by the other.
Configuration Interaction
Expand \psi({\bf r}_1,{\bf r}_2)= C_0u^{(s)}_1(r_1)u^{(s)}_1(r_2) + C_1u^{(P)}_1({\bf r}_1)u^{(P)}_1({\bf r}_2)\Upsilon^0_{1,1,0}(\hat{\bf r}_1, \hat{\bf r}_2)+C_2u^{(d)}_1({\bf r}_1)u^{(d)}_2({\bf r}_2)\Upsilon^0_{2,2,0}(\hat{\bf r}_1, \hat{\bf r}_2)+... \pm exchange where \Upsilon^M_{l_1,l_2,L}(\hat{\bf r}_1, \hat{\bf r}_2)=\Sigma_{m_1,m_2}\Upsilon^{m_1}_{l_1}({\bf r}_1)\Upsilon^{m_2}_{l_2}({\bf r}_2)\times <l_1l_2m_1m_2\mid LM> .
This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to ~10^{-7} a.u.
Hylleraas Coordinates
[E.A. Hylleraas, Z. Phys. {\bf 48}, 469(1928) and {\bf 54}, 347(1929)] suggested using the co-ordinates r_1, r_2 and r_{12} or equivalently
\begin{eqnarray} s &=& r_1 + r_2, \nonumber\\ t &=& r_1-r_2, \nonumber\\ u &=& r_{12}\nonumber \end{eqnarray}
and writing the trial functions in the form
\Psi({\bf r}_1,{\bf r}_2) = \sum^{1+j+k\leq N}_{i,j,k}c_{i,j,k}r_1^{i+l_1}r_2^{j+l_2}r_{12}^ke^{-\alpha r_1 - \beta r_2} \mathcal{Y}^M_{l_1,l_2,L}(\hat{r}_1,\hat{r}_2)\pm exchange\nonumber
Diagonalizing H in this non-orthogonal basis set is equivalent to solving \frac{\partial E}{\partial c_{i,j,k}} = 0\nonumber for fixed \alpha and \beta.
The diagonalization must be repeated for different values of \alpha and \beta in order to optimize the non-linear parameters.
Completeness
The completeness of the above basis set can be shown by first writing r_{12}^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\Theta_{12}) and \cos(\Theta_{12})=\frac{4\pi}{3}\sum^1_{m=-1}Y^{m*}_l(\theta_1,\varphi_1)Y^m_l(\theta_2,\varphi_2) consider first S-states. The r_{12}^0 terms are like the ss terms in a CI calculation. The r_{12}^2 terms bring in p-p type contributions, and the higher powers bring in d-d, f-f etc type terms. In general P_l(\cos(\theta_{12}) = \frac{4\pi}{2l+1}\sum^l_{m=-l}{Y^{m}_l}^*(\theta_1,\varphi_1)Y^m_l(\theta_2,\varphi_2)\nonumber
For P-states, one would have similarly
\begin{eqnarray} r_{12}^0\ \ \ \ \ \ \ \ (sp)P\nonumber\\ r_{12}^2\ \ \ \ \ \ \ \ (pd)P\nonumber\\ r_{12}^4\ \ \ \ \ \ \ \ (df)P\nonumber\\ \vdots \ \ \ \ \ \ \ \ \ \ \vdots\nonumber \end{eqnarray}
For D-states
\begin{eqnarray} r_{12}^0\ \ \ \ \ \ \ \ (sp)D\ \ \ \ \ \ \ \ (pp^\prime)D\nonumber\\ r_{12}^2\ \ \ \ \ \ \ \ (pd)D\ \ \ \ \ \ \ \ (dd^\prime)D\nonumber\\ r_{12}^4\ \ \ \ \ \ \ \ (df)D\ \ \ \ \ \ \ \ (ff^\prime)D\nonumber\\ \vdots \ \ \ \ \ \ \ \ \ \ \vdots\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots\nonumber\end{eqnarray}
In this case, since there are two lowest-order couplings to form a D-state, both must be present in the basis set. ie
\begin{eqnarray} \Psi(r_2,r_2) = \sum c_{ijk}r_1^ir_2^{j+2}r_{12}^ke^{-\alpha r_1-\beta r-2}\mathcal{Y}^M_{022}(\hat{r}_1,\hat{r}_2)\nonumber\\ +\sum d_{ijk}r_1^{i+1}r_2^{j+1}r_{12}e^{-\alpha^\prime r_1 - \beta^\prime r_2}\mathcal{Y}^M_{112}(\hat{r}_1,\hat{r}_2)\nonumber \end{eqnarray}
For F-states, one would need (sf)F and (pd)F terms.
For G-states, one would need (sg)G, (pf)G and (dd^\prime)G terms.
Completeness of the radial functions can be proven by considering the Stern-Liouville problem
\left(-\frac{1}{2}\nabla^2-\frac{\lambda}{r_s}-E\right)\psi({\bf r}) = 0\nonumber or \left(-\frac{1}{2}\frac{1}{r^2}\left({r^2}\frac{\partial}{\partial r}\right) - \frac{l\left(l+1\right)}{2r^2} - \frac{\lambda}{r} - E\right)u(r) = 0.\nonumber For fixed E and variable \lambda (nuclear charge).
The eigenvalues are \lambda_n = (E/E_n)^{1/2}, where E_n =- \frac{1}{2n^2}
u_{nl}(r) = \frac{1}{(2l+1)!}\left(\frac{(n+l)!}{(n-l-1)2!}\right)^{1/2}(2\alpha)^{3/2}e^{-\alpha r},\nonumber
with \alpha = (-2E)^{1/2} and n\geq l+1.
Unlike the hydrogen spectrum, which has both a discrete part for E<0 and a
continuous part for E>0, this forms an entirely discrete set of finite
polynomials, called Sturmian functions. They are orthogonal with respect to
the potential
-ie \int^\infty_0 r^2dru_{n^\prime l}(r)\frac{1}{r}u_{nl}(r) = \delta_{n,n^\prime}\nonumber
Since they become complete in the limit n\rightarrow\infty, this assures the
completeness of the variational basis set.
[see B Klahn and W.A. Bingel Theo. Chim. Acta (Berlin) {\bf 44}, 9 and 27 (1977)].
Solutions of the Eigenvalue Problem
For convenience, write
\Psi({\bf r}_1,{\bf r}_2) = \sum^N_{m=1}c_m\varphi_m\nonumber
where m= m'th combinations of i,j,k
\varphi_{ijk}=r_1^ir_2^jr_{12}^ke^{-\alpha r_1 - \beta r_2}\mathcal{Y}^M_{l_1,l_2,L}(\hat{r}_1,\hat{r}_2) \pm exchange.\nonumber
\left( \begin{array}{cc}
\cos(\theta) \sin(\theta)\\
-\sin(\theta) \cos(\theta)
\end{array} \right)
\left( \begin{array}{cc}
H_{11} H_{12}\\
H_{12} H_{22}
\end{array}\right)
\left( \begin{array}{cc}
\cos(\theta) -\sin(\theta)\\
\sin(\theta) \cos(\theta)
\end{array} \right)
= \left(\begin{array}{cc}
cH_{11}+sH_{12} cH_{12} + sH_{22}\\
-sH_{11} + cH_{12} -sH_{12} + cH_{22}
\end{array}\right)
\left( \begin{array}{cc}
c -s\\
s c
\end{array}\right)
= \left(\begin{array}{cc}
c^2H_{11}+s^2H_{22} + 2csH_{12} (c^2-s^2)H_{12}+cs(H_{22}-H_{11})\\
(c^2-s^2)H_{12}+cs(H_{22}-H_{11}) s^2H_{11}+c^2H_{22}-2csH_{12}
\end{array}\right)
Therefore (\cos^2(\theta)-\sin^2(\theta))H_{12} = \cos(\theta)\sin(\theta)(H_{11}-H_{22})\nonumber and \tan(2\theta) = \frac{2H_{12}}{H_{11}-H{22}}\nonumber
ie
\begin{eqnarray} \cos(\theta)=\left(\frac{r+\omega}{2r}\right)^{1/2}\nonumber,\\ \sin(\theta)=-sgn(H_{12})\left(\frac{r-\omega}{2r}\right)^{1/2}\nonumber \end{eqnarray}\\
where
\begin{eqnarray} \omega = H_{22}-H_{11}\nonumber\\ r=\left(\omega^2+4H_{12}^2\right)^{1/2}\nonumber\\ E_1=\frac{1}{2}\left(H_{11}+H_{22}-r\right)\nonumber\\ E_2=\frac{1}{2}\left(H_{11}+H_{22}+r\right)\nonumber \end{eqnarray}
Brute Force Method
-Gives all the eigenvalues and eigenvectors, but it is slow.
-First orthonormalize the basis set - ie form linear combinations
\Phi_m = \sum_n\varphi_nR_{nm}\nonumber such that <\Phi_m|\Phi_n> = \delta_{m,n}\\. This can be done by finding an orthogonal tranformation, T, such that
T^TOT=I=\left( \begin{array}{cccc} \ I_1\ 0 \ldots 0\\ 0\ \ I_2 \ldots 0 \\ \ \ \vdots \ \ \ \ \ \ I_3 \ldots \ 0 \\ 0\ \ 0\ \ 0\ \ddots \end{array}\right); \ \ O_{mn} = <\varphi_m|\varphi_n>\nonumber and then applying a scale change matrix S = \left(\begin{array}{cccc} \frac{1}{I_1^{1/2}} 0 \ldots 0\\ 0 \frac{1}{I_2^{1/2}} \ldots 0 \\ \vdots \ \ \frac{1}{I_3^{1/2}} 0 \\ 0\ 0\ 0\ \ddots \end{array}\right)= S^T\nonumber
Then S^TT^TOTS = 1\\. ie R^TOR = 1 with R=TS.
If H is the matrix with elements H_{mn}=<\varphi_m|\varphi_n>, then H expressed in the \Phi_m basis set is H^\prime = R^THR.\nonumber
We next diagonalize H^\prime by finding an orthogonal transformation W such that W^TH^\prime W = \lambda = \left( \begin{array}{cccc} \lambda_1 0 \ldots 0\\ 0\ \lambda_2 \ldots 0 \\ \ \ \vdots \ \ \ \ \ \ddots 0 \\ 0\ \ldots \lambda_N \end{array}\right)\nonumber
The q'th eigenvector is
\begin{eqnarray} \Psi^{(q)} = \sum_n\Phi_n W_{n,q}\nonumber \\ = \sum_{n,n^\prime}\varphi_{n^\prime}R_{n^\prime ,n}W_{n,q}.\nonumber \end{eqnarray} ie. c_{n^prime}^{(q)} = \sum_n R_{n^\prime n} W_{n,q}.
The Power Method
-Based on the observation that if H has one eigenvalue, \lambda_M, much bigger than all the rest, and \chi = \left(\nonumber\begin{array}{c}a_1\\a_2\\\vdots\nonumber\end{array}\right)\nonumber is an arbitrary starting vector, then \chi = \sum_q x_q\Psi^{(q)}\nonumber.
\begin{eqnarray} (H)^n\chi = \sum_q x_q \lambda^n_q\Psi^{(q)}\nonumber\rightarrow x_M\lambda_M^n\Psi^{(M)}\nonumber \end{eqnarray}\\ provided x_M\neq 0\\.
To pick out the eigenvector correspondng to any eigenvalue, with the original problem in the form
\begin{eqnarray} H\Psi = \lambda O\Psi\\\nonumber\\\ (H-\lambda)qO)\Psi\nonumber = (\lambda - \lambda_q)O\Psi\nonumber\end{eqnarray}
Therefore, G\Psi = \frac{1}{\lambda-\lambda_q}\Psi\nonumber\\ where G=(H-\lambda_qO)^{-1}O\nonumber with eigenvalues \frac{1}{\lambda_n-\lambda_q}\nonumber\\.
By picking \lambda_q close to any one of the \lambda_n, say \lambda_{n^\prime}, then \frac{1}{\lambda_n-\lambda_q} is much larger for n=n^\prime\nonumber than for any other value. The sequence is then
\begin{eqnarray} \chi_1=G\chi\nonumber\\ \chi_2=G\chi_1\nonumber\\ \chi_3=G\chi_2\nonumber\\ \vdots\nonumber \end{eqnarray}\\
until the ratios of components in \chi_n stop changing.
- To avoid matrix inversion and multiplication, note that the sequence is equivalent to
F\chi_n = (\lambda-\lambda_q)O\chi_{n-1}\nonumber\\
where F = H-\lambda_qO. The factor of (\lambda - \lambda_q) can be dropped because this only affects the normalization of \chi_n. To find \chi_n\\, solve F\chi_n = O\chi_{n-1}\nonumber\\ (N equations in N unknowns). Then
\lambda = \frac{<\chi_n|H|\chi_n>}{<\chi_n|\chi_n>}\nonumber
Matrix Elements of H
H=-\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2 - \frac{1}{r_1} - \frac{1}{r_2} +\frac{Z^{-1}}{r_{12}}\nonumber\\
Taking r_1, r_2 and r_{12} as independent variables,
\begin{eqnarray} \nabla_1^2 = \frac{1}{r_1^2}\frac{\partial}{\partial r_1}\left(r_1^2\frac{\partial}{\partial r_1}\right)+ \frac{1}{r_{12}^2}\frac{\partial}{\partial r_{12}} \left(r_{12}^2\frac{\partial}{\partial r_{12}}\right)\nonumber -\frac{l_1(l_1+1)}{r_1^2}+2(r_1-r_2\cos(\theta))\frac{1}{r_{12}}\frac{\partial^2}{\partial r_1 \partial r} \nonumber - 2(\nabla_1 \cdot {\bf r}_2)\frac{1}{r}\frac{\partial}{\partial r}\nonumber \end{eqnarray}
where
The complete set of 6 independent variables is r_1, r_2, r_{12}, \theta_1,\varphi_1, \chi.
If r_{12} were not an independent variable, then one could take the column element to be d\tau = r_1^2dr_1\sin(\theta_1)d\theta_1d\varphi_1r_2^2dr_2\sin(\theta_2)d\theta_2d\varphi_2.\nonumber
However, \theta_2 and \varphi_2 are no longer independent variables. To eliminate them, take the point {\bf r}_1 as the
origin of a new polar co-ordinate system, and write d\tau=-r_1^2dr_1\sin(\theta_1)d\theta_1d\varphi_1r_{12}^2dr_{12}\sin(\psi)d\psi d\chi\nonumber\\
and use r_2^2=r_1^2+r_{12}^2 +2r_1r_{12}\cos(\psi).\\
Then for fixed r_1 and r_{12}\\, 2r_2dr_2 = -2r_1r_{12}\sin(\psi)d\psi\\
Thus d\tau= r_1dr_1r_2dr_2r_{12}dr_{12}\sin(\theta_1)d\theta_1d\varphi_1d\chi\\
The basic type of integral to be calculated is
\begin{eqnarray}
I(l_1,m_1,l_2,m_2;R) =\int\sin(\theta_1)d\theta_1d\varphi_1d\chi Y^{m_1}_{l_1}(\theta_1,\varphi_1)^{*}Y^{m_2}_{l_2}(\theta_2,\varphi_2)\nonumber\\
\times\int r_1dr_1r_2dr_2r_{12}dr_{12}R(r_1,r_2,r_{12})\nonumber\\
\end{eqnarray}\\
Consider first the angular integral. Y^{m_2}_{l_2}(\theta_2,\varphi_2)\\ can be expressed in terms of the independent variables \theta_1, \varphi_1,\chi\\ by use of the rotation matrix relation
Y^{m_2}_{l_2}(\theta_2,\varphi_2) =\sum_m\mathcal{D}^{(l_2)}_{m_2,m}(\varphi_1,\theta_1,\chi)^*Y^m_{l_2}(\theta,\varphi)\nonumber\\
where \theta, \varphi are the polar angles of {\bf r}_2 relative to {\bf r}_1. The angular integral is then
\begin{eqnarray}
I_{ang}=\int^{2\pi}_0d\chi\int^{2\pi}_0d\varphi_1\int^\pi_0\sin(\theta_1)d=theta_1Y^{m_1}_{l_1}(\theta_1,\varphi_1)^*\nonumber\\
\times\sum_m\mathcal{D}^{(l_2)}_{m_2,m}(\varphi_1,\theta_1,\chi)^*Y^m_{l_2}(\theta,\varphi)\nonumber\\
\end{eqnarray}\\
Use
Y^{m_1}_{l_1}(\theta_1,\varphi_1)^* = \sqrt{\frac{2l_1+1}{4\pi}}\mathcal{D}^{(l_1)}_{m_1,0}(\varphi_1,\theta_1,\chi)\nonumber\\
together with the orthogonality property of the rotation matrices (Brink and
Satchler, p 147)
\mathcal{D}^{(j)*}_{m,m^\prime}\mathcal{D}^{(J)}_{M,M^\prime}\sin(\theta_1)d\theta_1d\varphi_1d\chi = \frac{8\pi^2}{2j+1}\delta_{jJ}\delta_{mM}\delta_{m^\prime M^\prime}\nonumber\\
to obtain
\begin{eqnarray}
I_{ang}=\sqrt{\frac{2l_1+1}{4\pi}}\frac{8\pi^2}{2l_1+1}\delta_{l_1,l_2}\delta_{m_1,m_2}Y^0_{l_2}(\theta,\varphi)\nonumber\\
=2\pi\delta_{l_1,l_2}\delta_{m_1,m_2}P_{l_2}(\cos\theta)\nonumber\\
\end{eqnarray}\\
since
Y^0_{l_2}(\theta,\varphi)=\sqrt{\frac{2l_1+1}{4\pi}}P_{l_2}(\cos(\theta))\nonumber\\.
Note that P_{l_2}(\cos\theta) is just a short hand expression for a radial function because \cos\theta = \frac{r_1^2+r_2^2-r_{12}^2}
{2r_1r_2}\nonumber\\.
The original integral is thus
\begin{eqnarray} I(l_1,m_1,l_2,m_2;R)=2\pi\delta_{l_1l_2}\delta_{m_1m_2}\nonumber\\ \times\int^\infty_0r_1dr_1\int^\infty_0r_2dr_2\int^{r_1+r_2}_{|r_1-r_2|} r_{12}dr_{12}R(r_1,r_2,r_{12})P_{l_2}(\cos\theta)\nonumber\\ \end{eqnarray}\\
where \cos\theta = (r_1^2 +r^2_2-r_{12}^2)/(2r_1r_2)\nonumber is a purely radial function.
The above would become quite complicated for large l_2 because P_{l_2}(\cos\theta) contains terms up to (\cos\theta)^{l_2}\\. However, recursion relations exist which allow any integral containing P_l(\cos\theta) in terms of those containing just P_0(\cos\theta)=1\nonumber\\
and P_1(\cos\theta)=\cos\theta\nonumber\\.
Radial Integrals and Recursion Relations
- The basic radial integral is I_0(a,b,c) = \int^\infty_0r_1dr_1\int^\infty_{r_1}r_2dr_2\int^{r_1+r_2}_{r_2-r_1}r_{12}dr_{12}r_1^ar_2^br_{12}^ce^{-\alpha r_1-\beta r_2}+\int^\infty_0r_2dr_2\int^\infty_{r_2}r_1dr_1\int^{r_1+r_2}_{r_1-r_2}r_{12}dr_{12}r_1^ar_2^br_{12}^ce^{-\alpha r_1- \beta r_2}\\ =\frac{2}{c+2}\sum^{[(c+1)/2]}_{i=0}\left( c+2 2i+1 \right)\{\frac{q!}{\beta^{q+1}(\alpha+\beta)^{P+1}}\sum_{j=0}q\frac{(p+j)!}{j!}\left(\frac{\beta}{\alpha+\beta}\right)^j+\frac{q^\prime !}{\alpha^{q^\prime+1}(\alpha+\beta)^{p^\prime+1}}\sum^{q^\prime}_{j=0}\frac{(p^\prime+j)!}{j!}\left(\frac{\alpha}{\alpha+\beta}\right)^j\}\nonumber
where p=a+2i|2\\ p^\prime = b+2i+2\\ q=b+c-2i+2\\ q^\prime = a+c-2i+2
The above applies for a,b \geq -2 c\geq -1. [x] means greatest integer in x.
Then I_1(a,b,c)=\int d\tau_r r_1^ar_2^br_{12}^ce^{-\alpha r_1-\beta r_2}P_1(\cos\theta) =\frac{1}{2}\left(I_0(a+1,b-1,c)+I_0(a-1,b+1,c)-I_0(a-1,b-1,c+2)\right).\nonumber
The Radial Recursion Relation
Recall that the full integral is I(l_1m_1,l_2m_2;R)=2\pi\delta_{l_1l_2}\delta_{m_1m_2}I_{l_2}(R) where I_{l_2}(R) = \int d\tau_r R(r_1,r_2,r_{12})P_{l_2}(\cos\theta).
To obtain the recursion relation, use
\begin{eqnarray}P_l(x) = \frac{[P^\prime_{l+1}(x)-P^\prime_{l-1}(x)]}{2l+1}\end{eqnarray} with P_{l+1}^\prime (x) = \frac{d}{dx}P_{l+1}(x).
Here x=\cos\theta and \begin{eqnarray}\ \ \ \frac{d}{d\cos\theta}= \frac{dr_{12}}{d\cos\theta}\frac{d}{dr_{12}} = -\frac{r_1r_2}{r_{12}}\frac{d}{dr_{12}}\end{eqnarray}.
Then, \begin{eqnarray}\ \ I_l(R)=-\int d\tau_r R \frac{r_1r_2}{r_{12}}\frac{d}{dr_{12}}\frac{[P_{l+1}(\cos\theta)-P_{l-1}(\cos\theta)]}{2l+1} \end{eqnarray}.
The r_{12} part of the integral is \begin{eqnarray}\ \ \int^{r_1+r_2}_{|r_1-r_2|}r_{12}dr_{12}R\frac{r_1r_2}{r{12}}\frac{d}{dr_{12}}[P_{l+1}-P_{l-1}]=Rr_1r_2[P_{l+1}-P_{l-1}]^{r_1+r_2}_{|r_1-r_2|}-\int^{r_1+r_2}_{|r_1-r_2|}r_{12}dr_{12}\left(\frac{d}{dr_{12}}R\right)\frac{r_1r_2}{r_{12}}\frac{[P_{l+1}-P_{l-1}]}{2l+1}\nonumber \end{eqnarray}
The integrated term vanishes because \begin{eqnarray}\ \ \cos\theta = \frac{r_1^2+r_2^2-r_{12}^2}{2r_1r_2}\ \ \ \begin{array}{cc} = -1 & when \ \ r_{12}^2 = (r_1+r_2)^2\\ = \ \ 1 & when \ \ r_{12}^2 = (r_1-r_2)^2 \end{array} \end{eqnarray} and P_l(1)=1, \ \ P_l(-1)=(-1)^l.
Thus, \begin{eqnarray}\ \ I_{l+1}\left(\frac{r_1r_2}{r_{12}}R^\prime\right) = (2l+1)I_l(R)-I_{l-1}\left(\frac{r_1r_2}{r_{12}}R^\prime\right) \end{eqnarray}
If R=r_1^{a-1}r_2^{b-1}r_{12}^{c+2}e^{-\alpha r_1 - \beta r_2}, then \begin{eqnarray}\ I_{l+1}(r_1^ar_2^br_{12}^c) = \frac{2l+1}{c+2}I_l(r_1^{a-1}r_2^{b-2}r_{12}^{c+2})+I_{l-1}(r_1^ar_2^br_{12}^c) \end{eqnarray}
For the case c=-2, take \begin{eqnarray}\ R=r_1^{a-1}r_2^{b-1}\ln r_{12} e^{-\alpha r_1 -\beta r_2}\end{eqnarray}. Then \begin{eqnarray}\ I_{l+1}(r_1^ar_2^br_{12}^c) = I_l(r_1^{a-1}r_2^{b-1}\ln r_{12})(2l+1)-I_{l-1}(r_1^ar_2^br_{12}^{-2}). \end{eqnarray} This allows all I_l integrals to be calculated from tables of I_0 and I_1 integrals.
The General Integral
-The above results fro the angular and raidal integrals can now be combined into a general formula for integrals of the type I = \int\int d{\bf r}_1d{\bf r}_2 R_1 \mathcal{Y}^{M^\prime}_{l^\prime_1 l^\prime_2 L^\prime}(\hat{r}_1,\hat{r}_2)T_{k_1k_2K}^Q({\bf r}_1,{\bf r}_2)R_2\mathcal{Y}_{l_ll_2L}^M(\hat{r}_1,\hat{r}_2)
where \begin{eqnarray} \mathcal{Y}^M_{l_1l_2L}(\hat{r}_1,\hat{r}_2) &=& \sum_{m_1,m_2}<l_1l_2m_1m_2|LM>Y^{m_1}_{l_1}(\hat{r}_1)Y^{m_2}_{l_2}(\hat{r}_2)\nonumber\end{eqnarray} and \begin{eqnarray} T^Q_{k_1k_2K}({\bf r}_1,{\bf r}_2) &=& \sum_{q_1,q_2}<k_1k_2q_1q_2|KQ>Y_{k_1}^{q_1}(\hat{r}_1)Y^{q_2}_{k_2}(\hat{r}_2)\nonumber \end{eqnarray}
The basic idea is to make repeated use of the formula \begin{eqnarray} Y^{m_1}_{l_1}(\hat{r}_1)Y^{m_2}_{l_2}(\hat{r}_2)&=& \sum_{lm}\left(\frac{(2l_1+1)(2l_2+1)(2l+1)}{4\pi}\right)^{1/2}\nonumber\ &\times& \left( \begin{array}{ccc} l_1 & l_2 & l\\ m_1 & m_2 & m\end{array}\right)\left(\begin{array}{ccc} l_1 & l_2 & l\\ 0 & 0 & 0\end{array} \right)Y^{m*}_l(\hat{r}_1)\nonumber \end{eqnarray}
where Y^{m*}(\hat{r}) = (-1)^mY_l^{-m}(\hat{r}) and \begin{eqnarray} \left(\begin{array}{ccc} l_1 & l_2 & l\\ m_1 & m_2 & m\end{array}\right)= \frac{(-1)^{l_1-l_2-m}}{(2l+1)^{1/2}}(l_1l_2m_1m_2|l,-m) \end{eqnarray} is a 3-j symbol.
In particular, write
\begin{array}{ccc} Y^{m_2^\prime}_{l_1^\prime}(\hat{r}_1)^*\underbrace{Y_{k_1}^{q_1}(\hat{r}_1)Y^{m_1}_{l_1}(\hat{r}_1)} & = & \sum_{\Lambda M}(\ldots)Y^M_\Lambda(\hat{r}_1)\\ \ \ \ \ \ \ \ \ \ \sum_{\lambda_1\mu_1}Y_{\lambda_1}^{\mu_1}(\hat{r}_1) & &\\ & & \\ Y^{m^\prime}_{l_2^\prime}(\hat{r}_2)\underbrace{Y^{q_2}_{k_2}(\hat{r}_2)Y_{l_2}^{m_2}(\hat{r}_2)} & = & \sum_{\Lambda^\prime M^\prime}(\ldots)Y_{\Lambda^\prime}^{M^\prime *}(\hat{r}_2)\\ \ \ \ \ \ \ \ \ \ \sum_{\lambda_2\mu_2}Y_{\lambda_2}^{\mu_2}(\hat{r}_2) & & \end{array}
The angular integral then gives a factor of 2\pi\delta_{\Lambda,\Lambda^\prime}\delta_{M,M^\prime}P_\Lambda(\cos\theta_{12}). The total integral therefore reduces to the form I = \sum_\lambda C_\Lambda I_\Lambda(R_1R_2), where c_\Lambda = \sum_{\lambda_1 \lambda_2}C_{\lambda_1,\lambda_2,\Lambda}.
Graphical Representation
Matrix Elements of H
Recall that H = -\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2-\frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}.
Consider matrix elements of \begin{eqnarray} \nabla^2_1 &=& \frac{1}{r_1}^2\left(\frac{\partial}{\partial r_1}\right) + \frac{1}{r^2}\left(\frac{\partial}{\partial r}\right) - \frac{(\vec{l}_1^y)^2}{r_1^2}\nonumber &+&\frac{2(r_1-r_2\cos\theta)}{r}\frac{\partial^2}{\partial r_1 \partial r} - 2(\nabla^y_1\cdot{\bf r}_2)\frac{1}{r}\frac{\partial}{\partial r}.\nonumber \end{eqnarray} where r \equiv r_{12} and \cos\theta \equiv \cos\theta_{12}.
Also \hat{\nabla}^y_1 \equiv r_1\nabla^y_1 operates only on the spherical harmonic part of the wavefunction.
A general matrix element is \begin{eqnarray} <r_1^{a^\prime}r_2^{b^\prime}r_{12}^{c^\prime}e^{-\alpha^\prime r_1 -\ beta^\prime r_2}\mathcal{Y}^{M^\prime}_{l^\prime_1l^\prime_2L^\prime}(\hat{r}_1,\hat{r}_2)|\nabla^2_1|r_1^ar_2^br_{12}^ce^{-\alpha r_1 -\beta r_2}\mathcal{Y}^M_{l_1l_2L}(\hat{r}_1,\hat{r}_2)> \end{eqnarray}.
Since \nabla^2_1 is rotationally invariant, this vanishes unless L=L^\prime, M=M^\prime. Also \nabla_1^2 is Hermitean, so that the result must be the same whether it operates to the right or left, even though the results look very different. In fact, requiring the results to be the same yields some interesting and useful integral identites as follows:
Put \begin{eqnarray} \mathcal{F} &=& F \mathcal{Y}^M_{l_1l_2L}(\hat{r}_1,\hat{r_2})\nonumber\end{eqnarray}, and \begin{eqnarray} F &=& r_1^ar_2^br_{12}^ce^{-\alpha r_1 -\beta r_2}.\nonumber \end{eqnarray}
Then \begin{eqnarray} \nabla^2_1\mathcal{F} &=& [\frac{1}{r_1^2}[a(a+1)-l_1(l_1+1)] + \frac{c(c+1)}{r^2} + \alpha^2\frac{2\alpha(a+1)}{r_1}\nonumber &+& \frac{2(r_1-r_2\cos\theta)}{r_1r^2}c[a-\alpha r_1]-\frac{2c}{r^2}(\hat{\nabla}^y_1\cdot\hat{r}_2)\frac{r_2}{r_1}]\mathcal{F}\nonumber \end{eqnarray}
and
\begin{eqnarray} <\mathcal{F}^\prime|\nabla^2_1|\mathcal{F}>= \sum_\Lambda \int d\tau_r F^\prime C_\Lambda (1)P_\Lambda(\cos\theta)\{\frac{1}{r_1^2}[a(a+1)-l_1(l_1+1)]\nonumber\\ -\frac{2\alpha(a+1)}{r_1}+\frac{c(c+1)}{r^2} +\alpha^2 + \frac{2(r_2-r_2\cos\theta)}{r_1r^2}c(a-\alpha r_1)\}F\nonumber + \sum_\Lambda\int d\tau_r F^\prime C\Lambda(\hat{\nabla}^y_1\cdot\hat{r}_2)P_\Lambda(\cos\theta)\left(\frac{-2cr_2}{r_1r^2}\right)F\nonumber \end{eqnarray}
where \begin{eqnarray} \int d\tau_r = \int^\infty_0 r_1 dr_1 \int^infty_0 r_2 dr_2 \int^{r_1+r_2}_{|r_1-r_2|}rdr \end{eqnarray}.
For brevity, let the sum over \Lambda and the raidal integrations be
understood, and let (\nabla_1^2) stand for the terms which appear in the
integrand. Then operating to the right gives
\begin{eqnarray} (\nabla_1^2)_R &=& \frac{1}{r_1^2}[a(a+1)-l_1(l_1+1)] + \frac{c(c+1)}{r^2} + \alpha^2 - \frac{2\alpha (a+1)}{r_1}\nonumber &+& \frac{2(r_1-r_2\cos\theta)}{r_1r62}c(a-\alpha r_1) - \frac{2cr-2}{r_1r^2}(\hat{\nabla}^y_1\cdot \hat{r}_2)\nonumber \end{eqnarray}.
Operating to the left gives
\begin{eqnarray} (\nabla_1^2)_L &=& \frac{1}{r_1^2}[a^\prime(a^\prime+1)-l_1^\prime(l_1^\prime+1)] + \frac{c^\prime(c^\prime+1)}{r^2} + \alpha^{2^\prime} - \frac{2\alpha^\prime (a^\prime+1)}{r_1}\nonumber &+& \frac{2(r_1-r_2\cos\theta)}{r_1r^2}c^\prime(a^\prime-\alpha r_1) - \frac{2c^\prime r-2}{r_1r^2}({\hat{\nabla}^{y\prime}_1}\cdot \hat{r}_2).\nonumber \end{eqnarray}
Now put \begin{array}{cccc} a_+ = a+a^\prime, \hat{\nabla}_1^+ = \hat{\nabla}_1^y + \hat{\nabla}_1^{y\prime}\end{array} and \begin{array}{cccc} a_{-} = a-a^\prime\ \hat{\nabla}_1^{-} = \hat{\nabla}_1^y - \hat{\nabla}_1^{y\prime} \end{array} etc.
and substitute a^\prime = a_+ - a, c^\prime = c_+ - c, and \alpha^\prime = \alpha_+ - \alpha in (\nabla^2_1)_L. If a_+, c_+ and \alpha_+ are held fixed, then the equation (\nabla^2_1)_R = (\nabla^2_1)_L must be true for arbitrary a, c, and \alpha. Their coefficients must thus vanish.
This yields the integral relations \label{I} \begin{eqnarray} \frac{(r_1-r_2\cos\theta)}{r_1r^2} = \frac{1}{c_+}\left(\frac{-(a_++1)}{r_1^2}+\frac{\alpha_+}{r_1}\right) \tag{I} \end{eqnarray} from the coef. of a, and \label{II} \begin{eqnarray} \frac{(r_1-r_2\cos\theta)(a_+-\alpha_+ r_1)}{r_1r^2} = \frac{r_2}{r_1r^2}(\hat{r}_2\cdot\hat{\nabla}_1^+)-\frac{(c_++1)}{r^2} \tag{II} \end{eqnarray} from the coef. of c. The coef. of \alpha gives an equation equivalant to (I).
Furthermore, if can be show that (see problem) \begin{eqnarray} \sum_\Lambda \int d\tau_r \frac{r^c}{r^2}C_\Lambda(\hat{r}_2\cdot\hat{\nabla}_1^y)P_\Lambda(\cos\theta) &=&\sum_\Lambda \int d\tau_r \frac{r^c}{cr_1r_2}C\Lambda(1)P_\Lambda(\cos\theta)\nonumber &\times&\left(\frac{l_1^\prime(l_1^\prime+1)-l_1(l_1+1)-\Lambda(\Lambda+1)}{2}\right)\nonumber\end{eqnarray}
and similarly for (\hat{r}_2\cdot\hat{\nabla}^{y\prime}_1) with l_1 and l_1^\prime interchangable, then it follows that \begin{eqnarray} \frac{r^{c_+}}{r^2}(\hat{r}_2\cdot\hat{\nabla}_1^+) = -\frac{r^{c_+}}{c_+r_1r_2}\Lambda(\Lambda+1) \end{eqnarray}
and \begin{eqnarray} \frac{r^{c_+}}{r^2}(\hat{r}_2\cdot\hat{\nabla}_1^-)= \frac{r^{c_+}}{c_+r_1r_2}[l_1^\prime(l_1^\prime+1)-l_1(l_1+1)] \end{eqnarray} where equality applies after integration and summation over \Lambda.
Thus (II) becomes \begin{eqnarray}\label{IIa} \frac{(r_1-r_2\cos\theta)(a_+-\alpha_+r_1)}{r_1r^2} = -\frac{\Lambda(\Lambda+1)}{c_+r^2_1}-\frac{(c_++1)}{r^2}. \tag{IIa} \end{eqnarray}
Problem
Prove the integral relation \begin{eqnarray}\ \ \sum_\Lambda \int d\tau_rf(r_1,r_2)\frac{1}{r}\left(\frac{d}{dr}q(r)\right)C_\Lambda(\hat{r}_2\cdot\hat{\nabla}^y_1)P_\Lambda(\cos\theta) =\sum_\Lambda \int d\tau_r \frac{f(r_1,r_2)}{r_1,r_2}q(r)C_\Lambda(1)P_\Lambda(\cos\theta)\nonumber \times \left(\frac{l_1^\prime(l_1^\prime+1)-l_1(l_1+1)-\Lambda(\Lambda+1)}{2}\right).\nonumber \end{eqnarray}
where C_\Lambda(1) are the angular coefficients from the overlap integral \int d\Omega \mathcal{Y}^{M*}_{l_1^\prime l_2^\prime L}(\hat{r}_1,\hat{r}_2) = \sum_\Lambda C_\Lambda(1)P_\Lambda(\cos\theta_{12}).
Hint: Use the fact that l_1^2 is Hermitean so that \int d\tau (l_1^2\mathcal{Y}^\prime)^*q(r)\mathcal{Y} = \int d\tau \mathcal{Y}^{\prime *}l_1^2(q(r)\mathcal{Y}) with \ \vec{l}_1= \frac{1}{i}\vec{r}_1\times\nabla_1.
It is also useful to use \begin{eqnarray}\ \ (\cos^2\theta-1)P_L(\cos\theta) = \frac{L(L-1)}{(2L-1)(2L+1)}P_{L-2}(\cos\theta)\nonumber =\frac{2(L^2+L-1)}{(2L-1)(2L+3)}P_L(\cos\theta) + \frac{(L+1)(L+2)}{(2L+1)(2L+3)}P_{L+2}(\cos\theta)\nonumber \end{eqnarray}
together with the integral recursion relation I_{L+1}\left(\frac{1}{r}\frac{d}{dr}q(r)\right) = (2L+1)I_L\left(\frac{1}{r_1r_2}q(r)\right)+I_{L-1}\left(\frac{1}{r}\frac{d}{dr}q(r)\right)
Of course l_1^2\mathcal{Y}^M_{l_1l_2L}(\hat{r}_1,\hat{r}_2)=l_1(l_1+1)\mathcal{Y}^M_{l_1l_2L}(\hat{r}_1,\hat{r}_2).
General Hermitean Property
Each combination of terms of the form <f>_R = a^2f_1 af_2+abf_3+b^2f_4+bf_5+af_6\nabla_1^y+bf_7\nabla^y_2+f_8(y) can be rewritten \begin{eqnarray}\ \ <f>_L= (a_+-a)^2f_1+(a_+-a)f_2 + (a_+-a)(b_+-b)f_3+(b_+-b)^2f_4\nonumber +(b_+-b)f_5+(a_+-a)f_6\nabla^{y\prime}_1+(b_+-b)f_7\nabla^{y\prime}_2+f_8)y^\prime\nonumber \end{eqnarray}
Since these must be equal for arbitrary a and b, a_+^2f_1+a_+f_2+_+b_+f_3+b_+f_4+b_+f_5+a_+f_6\nabla^{y\prime}_1 + b_+f_7\nabla^{y\prime}_2+f_8(y^\prime)-f_8(y)=0
Adding the corresponding expresssion with y and $y^\prime$ interchanged yields \label{III} a_+^2f_1+a_+f_2+a_+b_+f_3+b_+^2f_4+b_+f_5+\frac{1}{2}a_+f_6\nabla^+_1+\frac{1}{2}b_+f_7\nabla^+_2=0\tag{III}
Subtracting gives \label{IV} f_8(y)-f_8(y^\prime)=-\frac{1}{2}[a_+f_6\nabla^-_1+b_+f_7\nabla_2^-]\tag{IV} \label{V} a[-2a_+f_1-2f_2-b_+f_3-f_6=nabla^+_1]=0\tag{V} \label{VI} b[-2b_+f_4-2f_5-a_+f_3-f_7\nabla^+_2]=0\tag{VI}
Adding the two forms gives
\begin{eqnarray} <f>_R+<f>_L=\frac{1}{2}(a_+^2+a_-^2)f_1+a_+f_2+\frac{1}{2}(a_+b_++a_-b_-)f_3\nonumber\\ \ +\frac{1}{2}(b_+^2+b_-^2)f_4+b_+f_5+\frac{1}{2}f_6(a_+\nabla_1^++a_-\nabla^-_1)\nonumber\\ \ +\frac{1}{2}(b_+\nabla_2^++b_-\nabla^-_2)+f_8(y)+f_8(y^\prime)\nonumber \end{eqnarray}
Subtracting \begin{eqnarray}\frac{x}{2}\times(I)\end{eqnarray} gives
\begin{eqnarray}\ \ <f>_R+<f>_L = \frac{1}{2}[(1-x)a_+^2 + a_-^2]f_1 + (1-\frac{x}{2})a_+f_2+\frac{1}{2}[(1-x)a_+b_++a_-b_-]f_3\nonumber\\ +\frac{1}{2}[(1-x)b_+^2+b_-^2]f_4+(1-\frac{x}{2})f_5b_++\frac{1}{2}f_6[(1-\frac{x}{2})a_+\nabla_1^++a_-\nabla^-_1]\nonumber\\ +\frac{1}{2}[(1-\frac{x}{2})b_+\nabla^+_2+b_-\nabla^-_2]+f_8(y)+f_8(y^\prime)\nonumber \end{eqnarray}
If x=1, \begin{eqnarray} <f>_R+<f>_L &=& \frac{1}{2}[a_-^2f_1+a_+f_2+a_-b_-f_3+b_-^2f_4+b_+f_5\nonumber\\ &+&\left(\frac{1}{2}a_+\nabla^+_1+a_-\nabla^-_1\right)f_6+\left(\frac{1}{2}b_+\nabla^+_2+b_-\nabla^-_2\right)f_7]+f_8(y)+f_8(y^\prime)\nonumber \end{eqnarray}
The General Hermitean Property for arbitrary x gives \begin{eqnarray}\ \ \nabla_1^2= \frac{1}{4}\{\frac{1}{r_1^2}[(1-x)a_+^2+a_-^2+2(1-\frac{x}{2})a_+-2[l_1(l_1+1)+l_1^\prime(l_1^\prime+1)]\nonumber\\ -\frac{2}{r_1}[(1-x)\alpha_+a_++\alpha_-a_-+2(1-\frac{x}{2})\alpha_+]+(1-x)\alpha_+^2 + \alpha^2_-]\nonumber\\ +\frac{2(r_1-r_2\cos\theta)}{r_1r^2}[(1-x)(a_+-\alpha_+r_1)c_++(a_--\alpha_-r_2)c_-]\nonumber\\ -\frac{2r_2}{r_1r^2}[(1-\frac{x}{2})c_+\hat{r}_2\cdot\hat{\nabla}_1^++c_-\hat{r}_2\hat{\nabla}_1^-]+\frac{(1-x)c_+^2+c_-^2+2(1-\frac{x}{2})c_+}{r^2}\}\nonumber \end{eqnarray}.
Use \begin{eqnarray}\ \ \frac{-2r_2}{r_1r^2}[(1-\frac{x}{2})c_+\hat{r}_2\hat{\nabla}_1^++c_-\hat{r}_2\hat{\nabla}_1^-]=\frac{2}{r_1^2}\left[(1-\frac{x}{2})\Lambda(\Lambda+1)-\frac{c_-}{c_+}[l_1^\prime(l_1^\prime+1)+l_1(l_1+1)]\right]\end{eqnarray},
\begin{eqnarray} \frac{2(r_1-r_2\cos\theta)}{r_1r^2}(a_--\alpha_-r_1)c_- = 2\frac{c_-}{c_+}\left[\frac{-1}{r_1^2}[a_-(a_++1)]+\frac{1}{r_1}[a_-\alpha_++\alpha_-(a_++2)]-\alpha_-\alpha_+\right]\nonumber \end{eqnarray},
and \begin{eqnarray}\ \ \frac{2(r_1-r_2\cos\theta)}{r_1r^2}(a_+-\alpha_+r_1)c_+ = 2\left[-\frac{1}{r_1^2}[a_+(a_++1)]+\frac{1}{r_1}[a_+\alpha_++\alpha_+(a_++2)]-\alpha_+^2\right] \end{eqnarray}.
Substituting into \nabla_1^2 gives
\begin{eqnarray} \nabla^2_1 = \frac{1}{4}\{\frac{1}{r_1^2}[-(1-x)a_+^2 + a_-^2 +xa_+ + 2(1-\frac{x}{2})\Lambda(\Lambda+1)\nonumber\\ -2l_1(l_1+1)(1-\frac{c_-}{c_+}) - 2l_1^\prime(l_1^\prime+1)(1+\frac{c_-}{c_+})-\frac{2c_-a_-}{c_+}(a_++1)]\nonumber\\ - \frac{2}{r_1}\left[-(1-x)\alpha_+(a_++2)+\alpha_-a_-+2(1-\frac{x}{2})\alpha_+ -\frac{c_-}{c_+}[a_-\alpha_++\alpha_-(a_++2)]\right]\nonumber\\ -(1-x)\alpha_+^2+\alpha_-^2-2\frac{c_-}{c_+}\alpha_-\alpha_+ +\frac{1}{r^2}\left[(1-x)c_+^2+c_-^2+2(1-\frac{x}{2})c_+\right]\}\nonumber \end{eqnarray}
This has the form \nabla_1^2 = \frac{1}{4}\left[\frac{A_1}{r_1^2}+\frac{B_1}{r_1}+\frac{C_1}{r^2}+D_1\right] with
\begin{array}{ccc} A_1=-(1-x)a_+^2+a_-^2 +xa_++2(1-\frac{x}{2})\Lambda(\Lambda+1)-2l_1(l_1+1)(1-\frac{c_-}{c_+})\ -2l_1^\prime(l_1^\prime+1)(1+\frac{c_-}{c_+})-\frac{2c_-a_-}{c_+}(a_++1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array}
B_1 = 2\left[(1-x)\alpha_+(a_++2)-\alpha_-a_--2(1-\frac{x}{2})\alpha_++\frac{c_-}{c_+}[a_-\alpha_++\alpha_(a_++2)]\right]
C_1 = (1-x)c_+^2+ c_-^2 +2(1-\frac{x}{2})c_+
D_1 = -1(1-x)\alpha_+^2 +\alpha_-^2 - 2\frac{c_-}{c_+}\alpha_-\alpha_+
The complete Hamiltonian is then (in Z-scaled a.u.)
\begin{eqnarray} H =-\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2 -\frac{1}{r_1} -\frac{1}{r_2} +\frac{Z^{-1}}{r}\nonumber\\ = -\frac{1}{2}\nabla^2_1 -\frac{1}{2}\nabla^2_2 -\frac{1}{r_1} -\frac{Z-1}{Zr_2}+Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right)\nonumber\\ \ =-\frac{1}{8}\left[\frac{A_1}{r_1^2}+\frac{B_1+8}{r_1}+\frac{C_1}{r^2}+D_1+D_2 +\frac{A_2}{r_2^2} + \frac{B_2 + 8(Z-1)/Z}{r_2}+\frac{C_2}{r^2}\right]\nonumber + Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right)\nonumber \end{eqnarray}
The screened hydrogenic energy is \begin{eqnarray} E_{SH}=-\frac{1}{2}\left[\frac{1}{n_1^2}+ \left(\frac{Z-1}{Z}\right)^2\frac{1}{n_2^2}\right] \end{eqnarray} so that
\begin{eqnarray} H-E_{SH} &=& -\frac{1}{8}[ \frac{A_1}{r_1^2}+\frac{B_1+8}{r_1}+\frac{C_1}{r^2} + D_1 + D_2 -\frac{4}{n_1^2} -\left(\frac{Z-1}{Z}\right)^2\frac{4}{n_2^2}\nonumber +\frac{A_2}{r_2}+\frac{B_2+8(Z-1)/Z}{r_2}+\frac{C_2}{r^2}] + Z^{-1}\left(\frac{1}{r} -\frac{1}{r_2}\right)\nonumber \end{eqnarray}
Optimization of Non-linear Parameters
- The traditional method of performing Hylleraas calculations is to write the basis set in the form
\Psi = \sum_{i,j,k}c_{i,j,k}\varphi_{i,j,k}(\alpha,\beta)\pm exchange
with
\varphi_{i,j,k}(\alpha,\beta) = r_1^ir_2^jr_{12}^ke^{-\alpha r_1 - \beta r_2}\mathcal{Y}^M_{l_1l_2L}.
The usual procedure is to set \alpha = Z so that it represents the inner 1s electron, and then to vary \beta so as to minimize the energy.
Since \beta appears in \Psi as a non-linear parameter, the enitre calculation must be repeated for each value of \beta. However, the minimum becomes progressively smaller as the basis set is enlarged.
- Difficulties
1. If the basis set is constructed so that i +j +j \leq N, the the number of terms is (N+1)(N+2)(N+3)/6 N=14 already gives 680 terms and an accuracy of about 1 part in 10^10 for low-lying states. A substantial improvement in accuracy would require much larger basis sets, together with multiple precision arithmetic to avoid loss of significiant figures when high powers are incluuded.
2. The accuracy rapidly deteriorates as one goes to more highly excited states - about 1 significant figure is lost each time the principle quantum number is increased.
- Cure
We have found that writing basis sets in the form \begin{eqnarray} \Psi &=& \sum_{i,j,k}\left(c^{(1)}_{i,j,k}\varphi_{ijk}(\alpha_1\beta_1) + c_{ijk}^{(2)}\varphi_{ijk}(\alpha_2\beta_2)\right) \pm exchange \nonumber\\ &=& \psi({\bf r}_1,{\bf r}_2) \pm \psi({\bf r}_2,{\bf r}_1)\nonumber \end{eqnarray} so that each combination of powers is includd twice with different non-linear parameters gives a dramatic improvement in accuracy ffor basis sets of about the same total size.
However, the optimization of the non-linear parameters is now much more difficult, and an automated procedure is needed.
If E = \frac{<\Psi|H|\Psi>}{<\Psi|\Psi>},
then in <\Psi|\Psi> = 1, \frac{\partial E}{\partial\alpha_t} = -2 <\Psi|H-E|r_1\psi({\bf r}_1,{\bf r}_2;\alpha_t)\pm r_21\psi({\bf r}_2,{\bf r}_1;\alpha_t)> where \psi({\bf r}_1,{\bf r}_2;\alpha_t) = \sum_{i,j,k}c_{ijk}^{(t)}\varphi_{ijk}(\alpha_t\beta_t)
- Problem
1. Prove the above.
2. Prove that there is no contribution from the implicit dependence of c_{ijk}^{(t)} on \alpha_t if the linear parameters have been optimized.
The Screened Hydrogenic Term
If the Hamiltonian is written in the form (in Z-scaled a.u.) \begin{eqnarray}\ H = H_0({\bf r}_1,Z) + H_0({\bf r}_2,Z-1) + Z^{-1}\left(\frac{1}{r}-\frac{1}{r_2}\right) \end{eqnarray} with \ H_0({\bf r}_1,Z) = -\frac{1}{2}\nabla_1^2 - \frac{1}{r_1}\nonumber and H_0({\bf r}_2,Z-1) = -\frac{1}{2}\nabla_2^2 - \frac{Z-1}Z{r_2}\nonumber , then the eigenvectors of H_0({\bf r},Z) +H_0({\bf r}_2,Z-1) are products of hydrogenic orbitals \Psi_0=\psi_0(1s,Z)\psi_0(nl,Z-1) and the eigenvalue is \begin{eqnarray} E_{SH} = \left[-\frac{1}{2} - \left(\frac{Z-1}{Z}\right)^2\frac{1}{2n^2}\right]Z^2 a.u. \end{eqnarray} called the screened hydrogenic eigenvalue. From highly excited states, E_{SH} and \Psi_0are already excellent approximations.
For example, for the 1s8d states, the energies are
\begin{eqnarray}\\ E(1s8d^1D)= -2.00781651256381 a.u.\nonumber\\ E(1s8d^3D)= - 2.00781793471171 a.u.\nonumber\\ E_{SH} = -2.0078125\nonumber \end{eqnarray}
It is therefore advantageousto include the screened hydrogenic terms in the basis set so that the complete trial function becomes \Psi = c_0\Psi_0 + \sum_{ijk}\left[c_{ijk}^{(1)}\varphi_{ijk}(\alpha_1,\beta_1)+c_{ijk}^{(2)}\varphi(\alpha_2,\beta_2)\right]\pm exchange
Also, the variational principal can be re-expressed in the form \begin{eqnarray} E= E_{SH}+\frac{<\Psi|H-E_{SH}|\Psi>}{<\Psi|\Psi>} \end{eqnarray} so that the E_{SH} term can be cancelled analytically from the matrix elements.
For example <\Psi_0|H-E_{SH}|\Psi_0> = 0
and <\varphi_{ijk}|H-E_{SH}|\Psi_0> = Z^{-1}<\varphi_{ijk}|\frac{1}{r}-\frac{1}{r_2}|\Psi_0>
Recall that \begin{eqnarray}\ \ I_0(a,b,c) = \frac{2}{c+2}\sum^{[c+1]/2}_{i=0}\left(\begin{array}{c} c+2\\ 2i+1 \end{array}\right) \left[f(p,q;\beta) + f(p^\prime,q^\prime;\alpha)\right] \end{eqnarray} where
\begin{eqnarray} f(p,q;x) = \frac{q!}{x^{q+1}(\alpha+\beta)^{p+1}}\sum^p_{j=0}\frac{(p+j)!}{j!}\left(\frac{x}{\alpha+\beta}\right)^j \end{eqnarray}
\begin{array}{cc} p=a+2i+2 & p^\prime = b+2i+2\\ q= b+c-2i+2 & q^\prime =a+c-2i+2 \end{array}
If \beta\ll\alpha, the f(p,q;\beta)\gg f(p^\prime,q^\prime;\alpha) and the i=0 term is the dominant contribution to f(p,q;\beta). However, since this term depends only on the sum of powers b+c for r_2, it cancels exactly from the matrix element of \begin{eqnarray}\frac{1}{r_12} - \frac{1}{r_2}\end{eqnarray} and can therefore be omitted in the calculations of integrands, there by saving many significant figures. This is especially valuable when b+c is large and a is small.
Small Corrections
- Mass Polarization
If the nuclear mass is not taken to be infinite, then the Hamiltonian is \begin{eqnarray}\ \ H = \frac{P_N^2}{2M} + \sum_{i=1}\frac{p_i^2}{2m} + V \end{eqnarray}
where M =M_A-nm is the nuclear mass and m is the electron mass.
Change variables to the C of M \begin{eqnarray} {\bf R} = \frac{1}{M+nm}\left[M{\bf r}_N + m({\bf r}_1 + {\bf r}_2 + \ldots)\right] \end{eqnarray}
and relative variables
{\bf s}_i = {\bf r}_i - {\bf r}_N.
Then
\begin{eqnarray}\ \ \ \ \ H = \frac{1}{2(M+nm)}{\bf p}_R^2+\frac{1}{2m}\sum_{i=1}^n{\bf p}_{s_i}^2 +\frac{1}{2M}\sum_{i,k}{\bf p}_{s_i}\cdot {\bf p}_{s_k} + V({\bf s}_1, {\bf s}_2, \ldots)\nonumber = \frac{1}{M+nm}{\bf p}_R^2+\frac{1}{2\mu}\sum_{i=1}^n{\bf p}_{s_i}^2+\frac{1}{2M}\sum_{i\neq k}{\bf p}_{s_i}\cdot {\bf p}_{s_k}+V({\bf s}_1, {\bf s}_2, \ldots)\nonumber \end{eqnarray}
where \begin{eqnarray} \mu = \left(\frac{1}{M} + \frac{1}{m}\right)^{-1} \end{eqnarray}
If n=2, the Schroedinger equation is \begin{eqnarray}\ \ \ \left[ -\frac{\hbar^2}{2\mu}(\nabla^2_{s_1}+ \nabla^2_{s_2}) - \frac{\hbar^2}{M}\nabla_{s_1}\nabla_{s_2}-\frac{Ze^2}{s_1}-\frac{Ze^2}{s_2}+\frac{e^2}{s_12}\right]\psi = E\psi \end{eqnarray}.
Define the reduced mass Bohr radius \begin{eqnarray} a_\mu = \frac{hbar^2}{\mu e^2} = \frac{m}{\mu}a_0 \end{eqnarray} and
\begin{eqnarray} \rho_i = \frac{Zs_i}{a_\mu}\nonumber\\ \varepsilon = \frac{E}{Z^2(e^2/a_\mu)}\nonumber \end{eqnarray}
The Schroedinger equation then becomes \begin{eqnarray}\ \ \ \left[ -\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2})-\frac{\mu}{M}\vec{\nabla}_{\rho_1}\cdot\vec{\nabla}_{\rho_2} - \frac{1}{\rho_1}-\frac{1}{\rho_2}+\frac{Z^{-1}}{\rho_{12}}\right]\psi = \varepsilon \psi \end{eqnarray}
The effects of finite meass are thus
1. A reduced mass correction to all energy levels of (e^2/a\mu)/(e^2/a_0) = \mu/m, ie. \begin{eqnarray} E_M=\frac{\mu}{m}E_\infty \end{eqnarray}
2. A specific mass shift given in first order perturbation theory by \begin{eqnarray} \Delta\varepsilon = -\frac{\mu}{M}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi> \end{eqnarray} or
\begin{eqnarray} \Delta\varepsilon = -\frac{\mu}{M}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi>\frac{e^2}{a_\mu}\nonumber\\ = -\frac{\mu^2}{mM}<\psi|\nabla_{\rho_1}\cdot\nabla_{\rho_2}|\psi>\frac{e^2}{a_0}\nonumber \end{eqnarray}
Since \nabla_{\rho_1}\cdot\nabla_{\rho_2} has the same angular properties as {\bf\rho}_1 \cdot {\bf\rho}_2, the operator is like the product of two dipole operators. For product type wave functions of the form \psi = \psi(1s)\psi(nl) \pm exchange the matrix element vanishes for all but p-states.