Theory Notes

From Dr. GWF Drake's Research Group
Revision as of 05:16, 29 November 2010 by HyperActive (talk | contribs)
Jump to: navigation, search

Helium Calculations

\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)

Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then

\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)

But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore

\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)

The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)

[figure to be inserted]

The Hartree Fock Method

Assume that \(\psi({\bf r}_1,{\bf r}_2)\) can be written in the form

<math style="horizontal-align:middle;">\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber</math>

for the \(1S^21S\) ground state

\([-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber\)

Substitute into \(<\psi|H-E|\psi>\) and require this expression to be stationary with respect to arbitrary infinitesimal variations \(\delta u_1\) and \(\delta u_2\) in \(u_1\) and \(u_2\). ie

\(\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2{r_1}\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber\)

\(=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber\)

\(= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber\)

Therefore \(\{\int d{\bf r}_2 \ldots \} = 0\).

Similarrily, the coefficient of \(\delta u_2\) would give

\(\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(4_2)] = 0\nonumber\)

Define

\(I_{12} = \int dru_1(r)u_2(r), \nonumber\)

\(I_{21} = \int dru_1(r)u_2(r), \nonumber\)

\(H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber\)

\(G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber\)

Then the above equations become the pair ofintegro-differential equations

\([ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber\)

\([H_0-E+H_{11}+G_{11}(r)]u_2(r) &=& \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber\)

These must be solved self-consistently for the "constants" \(I_{12}\) and \(H_{ij}\) and the function \(G_{ij}(r)\).

The H.F. energy is \(E \simeq -2.87\cdots a.u.\) while the exact energy is \(E = -2.903724\cdots a.u.\)

The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations onle describe how one electron moves in the average field provided by the other.

Configuration Interaction

Refer to Drake's notes

Hylleras Co-ordinates

Refer to Drake's notes

Completeness

Refer to Drake's notes

Solutions of the Eigenvalue Problem

Refer to Drake's notes

Brute Force Method

Refer to Drake's notes

The Power Method

Refer to Drake's notes

Matrix Elements of H

Refer to Drake's notes

Radial Integrals and Recursion Relations

Refer to Drake's notes

The Radial Recursion Relation

Refer to Drake's notes

The General Integral

Refer to Drake's notes

Graphical Representation

[figure to be inserted]

Matrix Elements of H

Problem

General Hermitean Property

Optimization of Non-linear Parameters

  • Difficulties
  • Cure

The Screened Hyrdogenic Term

Small Corrections

  • Mass Polarization