Difference between revisions of "Theory Notes"

From Dr. GWF Drake's Research Group
Jump to: navigation, search
Line 81: Line 81:
  
 
==Configuration Interaction==
 
==Configuration Interaction==
Refer to Drake's notes
+
For all further sections refer to Dr. Drake's notes
  
 
==Hylleras Co-ordinates==
 
==Hylleras Co-ordinates==
Refer to Drake's notes
 
  
 
==Completeness==
 
==Completeness==
Refer to Drake's notes
 
  
 
==Solutions of the Eigenvalue Problem==
 
==Solutions of the Eigenvalue Problem==
Refer to Drake's notes
 
  
 
===Brute Force Method===
 
===Brute Force Method===
Refer to Drake's notes
 
  
 
===The Power Method===
 
===The Power Method===
Refer to Drake's notes
 
  
 
==Matrix Elements of H==
 
==Matrix Elements of H==
Refer to Drake's notes
 
  
 
==Radial Integrals and Recursion Relations==
 
==Radial Integrals and Recursion Relations==
Refer to Drake's notes
 
  
 
===The Radial Recursion Relation===
 
===The Radial Recursion Relation===
Refer to Drake's notes
 
  
 
===The General Integral===
 
===The General Integral===
Refer to Drake's notes
 
  
 
==Graphical Representation==
 
==Graphical Representation==

Revision as of 05:17, 29 November 2010

Helium Calculations

\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)

Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then

\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)

But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore

\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)

The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)

[figure to be inserted]

The Hartree Fock Method

Assume that \(\psi({\bf r}_1,{\bf r}_2)\) can be written in the form

<math style="horizontal-align:middle;">\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber</math>

for the \(1S^21S\) ground state

\([-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber\)

Substitute into \(<\psi|H-E|\psi>\) and require this expression to be stationary with respect to arbitrary infinitesimal variations \(\delta u_1\) and \(\delta u_2\) in \(u_1\) and \(u_2\). ie

\(\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2{r_1}\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber\)

\(=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber\)

\(= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber\)

Therefore \(\{\int d{\bf r}_2 \ldots \} = 0\).

Similarrily, the coefficient of \(\delta u_2\) would give

\(\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(4_2)] = 0\nonumber\)

Define

\(I_{12} = \int dru_1(r)u_2(r), \nonumber\)

\(I_{21} = \int dru_1(r)u_2(r), \nonumber\)

\(H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber\)

\(G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber\)

Then the above equations become the pair ofintegro-differential equations

\([ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber\)

\([H_0-E+H_{11}+G_{11}(r)]u_2(r) &=& \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber\)

These must be solved self-consistently for the "constants" \(I_{12}\) and \(H_{ij}\) and the function \(G_{ij}(r)\).

The H.F. energy is \(E \simeq -2.87\cdots a.u.\) while the exact energy is \(E = -2.903724\cdots a.u.\)

The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations onle describe how one electron moves in the average field provided by the other.

Configuration Interaction

For all further sections refer to Dr. Drake's notes

Hylleras Co-ordinates

Completeness

Solutions of the Eigenvalue Problem

Brute Force Method

The Power Method

Matrix Elements of H

Radial Integrals and Recursion Relations

The Radial Recursion Relation

The General Integral

Graphical Representation

[figure to be inserted]

Matrix Elements of H

Problem

General Hermitean Property

Optimization of Non-linear Parameters

  • Difficulties
  • Cure

The Screened Hyrdogenic Term

Small Corrections

  • Mass Polarization