Difference between revisions of "Theory Notes"
(→Configuration Interaction) |
|||
Line 81: | Line 81: | ||
==Configuration Interaction== | ==Configuration Interaction== | ||
− | Expand <math> \psi({\bf r}_1,{\bf r}_2)&=& C_0u^{(s)}_1(r_1)u^{(s)}_1(r_2) + C_1u^{(P)}_1({\bf r}_1)u^{(P)}_1({\bf r}_2)\Upsilon^0_{1,1,0}(\hat{\bf r}_1, \hat{\bf r}_2)+C_2u^{(d)}_1({\bf r}_1)u^{(d)}_2({\bf r}_2)\Upsilon^0_{2,2,0}(\hat{\bf r}_1,\hat{\bf r}_2)+... \pm</math> exchange where <math>\Upsilon^M_{l_1,l_2,L}(\hat{bf r}_1,\hat{bf r}_2)&=&\Sigma_{m_1,m_2}\Upsilon^{m_1}_{l_1}({\bf r}_1)\Upsilon^{m_2}_{l_2}( | + | Expand <math> \psi({\bf r}_1,{\bf r}_2)&=& C_0u^{(s)}_1(r_1)u^{(s)}_1(r_2) + C_1u^{(P)}_1({\bf r}_1)u^{(P)}_1({\bf r}_2)\Upsilon^0_{1,1,0}(\hat{\bf r}_1, \hat{\bf r}_2)+C_2u^{(d)}_1({\bf r}_1)u^{(d)}_2({\bf r}_2)\Upsilon^0_{2,2,0}(\hat{\bf r}_1, \hat{\bf r}_2)+... \pm</math> exchange where <math>\Upsilon^M_{l_1,l_2,L}(\hat{bf r}_1, \hat{bf r}_2)&=&\Sigma_{m_1,m_2}\Upsilon^{m_1}_{l_1}({\bf r}_1)\Upsilon^{m_2}_{l_2}({bf r}_2)\times <l_1l_2m_1m_2\mid LM> </math>. |
− | This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to <math> ~10^-7</math> a.u. | + | This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to <math> ~10^{-7}</math> a.u. |
==Hylleras Co-ordinates== | ==Hylleras Co-ordinates== |
Revision as of 03:11, 10 March 2011
Contents
- 1 Helium Calculations
- 2 The Hartree Fock Method
- 3 Configuration Interaction
- 4 Hylleras Co-ordinates
- 5 Completeness
- 6 Solutions of the Eigenvalue Problem
- 7 Matrix Elements of H
- 8 Radial Integrals and Recursion Relations
- 9 Graphical Representation
- 10 Matrix Elements of H
- 11 General Hermitean Property
- 12 Optimization of Non-linear Parameters
- 13 The Screened Hyrdogenic Term
- 14 Small Corrections
Helium Calculations
\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)
Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then
\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)
But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore
\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)
The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)
[figure to be inserted]
The Hartree Fock Method
Assume that \(\psi({\bf r}_1,{\bf r}_2)\) can be written in the form
<math style="horizontal-align:middle;">\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber</math>
for the \(1S^21S\) ground state
\([-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber\)
Substitute into \(<\psi|H-E|\psi>\) and require this expression to be stationary with respect to arbitrary infinitesimal variations \(\delta u_1\) and \(\delta u_2\) in \(u_1\) and \(u_2\). ie
\(\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2(r_1)\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber\)
\(=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber\)
\(= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber\)
Therefore \(\{\int d{\bf r}_2 \ldots \} = 0\).
Similarly, the coefficient of \(\delta u_2\) would give
\(\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)] = 0\nonumber\)
Define
\(I_{12} = \int dru_1(r)u_2(r), \nonumber\)
\(I_{21} = \int dru_1(r)u_2(r), \nonumber\)
\(H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber\)
\(G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber\)
Then the above equations become the pair of integro-differential equations
\([ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber\)
\([H_0-E+H_{11}+G_{11}(r)]u_2(r) &=& \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber\)
These must be solved self-consistently for the "constants" \(I_{12}\) and \(H_{ij}\) and the function \(G_{ij}(r)\).
The H.F. energy is \(E \simeq -2.87\cdots a.u.\) while the exact energy is \(E = -2.903724\cdots a.u.\)
The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations only describe how one electron moves in the average field provided by the other.
Configuration Interaction
Expand \( \psi({\bf r}_1,{\bf r}_2)&=& C_0u^{(s)}_1(r_1)u^{(s)}_1(r_2) + C_1u^{(P)}_1({\bf r}_1)u^{(P)}_1({\bf r}_2)\Upsilon^0_{1,1,0}(\hat{\bf r}_1, \hat{\bf r}_2)+C_2u^{(d)}_1({\bf r}_1)u^{(d)}_2({\bf r}_2)\Upsilon^0_{2,2,0}(\hat{\bf r}_1, \hat{\bf r}_2)+... \pm\) exchange where \(\Upsilon^M_{l_1,l_2,L}(\hat{bf r}_1, \hat{bf r}_2)&=&\Sigma_{m_1,m_2}\Upsilon^{m_1}_{l_1}({\bf r}_1)\Upsilon^{m_2}_{l_2}({bf r}_2)\times <l_1l_2m_1m_2\mid LM> \).
This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to \( ~10^{-7}\) a.u.
Hylleras Co-ordinates
Completeness
Solutions of the Eigenvalue Problem
Brute Force Method
The Power Method
Matrix Elements of H
Radial Integrals and Recursion Relations
The Radial Recursion Relation
The General Integral
Graphical Representation
[figure to be inserted]
Matrix Elements of H
Problem
General Hermitean Property
Optimization of Non-linear Parameters
- Difficulties
- Cure
The Screened Hyrdogenic Term
Small Corrections
- Mass Polarization