Difference between revisions of "Theory Notes"

From Dr. GWF Drake's Research Group
Jump to: navigation, search
Line 1: Line 1:
<m> { \partial^2 u \over \partial t^2 } = c^2 \nabla^2 u </m>
+
==Helium Calculations==
 +
<math> [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} -
 +
\frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber
 +
</math>
 +
 
 +
Define <math>\rho = \frac{Zr}{a_0}</math> where <math>a_0 = \frac{\hbar^2}{me^2}</math> (Bohr
 +
radius).  Then
 +
 
 +
<math>[-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2})
 +
- Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 +
 +
\frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber</math>
 +
 
 +
But <math>\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}</math> is in
 +
atomic units (au) of energy.  Therefore
 +
 
 +
<math>[-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) -
 +
  \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi =
 +
  \varepsilon\psi\nonumber</math>
 +
where <math>\varepsilon = \frac{Ea_0}{Z^2e^2}</math>
 +
 
 +
The problem to be solved is thus
 +
<math>[\frac{1}{2}(\nabla^2_1+\nabla^2_2) -
 +
  \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi =
 +
  \varepsilon\psi\nonumber</math>
 +
 
 +
[figure to be inserted]

Revision as of 04:57, 29 November 2010

Helium Calculations

\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)

Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then

\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)

But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore

\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)

The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)

[figure to be inserted]