Difference between revisions of "Theory Notes"

From Dr. GWF Drake's Research Group
Jump to: navigation, search
(Hylleraas Coordinates)
Line 87: Line 87:
 
==Hylleraas Coordinates==
 
==Hylleraas Coordinates==
 
<math> [E.A. Hylleraas, Z. Phys. {\bf 48}, 469(1928) and {\bf 54}, 347(1929)]
 
<math> [E.A. Hylleraas, Z. Phys. {\bf 48}, 469(1928) and {\bf 54}, 347(1929)]
suggested using the co-ordinates $r_1, 4_2$ and $r_{12}$ or equivalently
+
suggested using the co-ordinates $r_1, r_2$ and $r_{12}$ or equivalently  
 
\begin{eqnarray}
 
\begin{eqnarray}
 
s &=& r_1 + r_2, \nonumber\\
 
s &=& r_1 + r_2, \nonumber\\
Line 106: Line 106:
  
 
The diagonalization must be repeated for different values of $\alpha$ and
 
The diagonalization must be repeated for different values of $\alpha$ and
$\beta$ in order to optimize the non-linear parameters.<math>
+
$\beta$ in order to optimize the non-linear parameters.
 
 
 
 
 
 
 
 
==Completeness==
 
<math> The completeness of the above basis set can be shown by first writing
 
$r_{12}^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\Theta_{12})$ and
 
$\cos(\Theta_{12})=\frac{4\pi}{3}\sum^1_{m=-1}Y^{m*}_l(\theta_1,\varphi_1)Y^m_l(\theta_2,\varphi_2)$
 
consider first S-states.
 
The $r_{12}^0$ terms are like the ss terms in a CI calculation.  The
 
$r_{12}^2$ terms bring in p-p type contributions, and the higher powers bring
 
in d-d, f-f etc type terms.  In general
 
\begin{equation}
 
P_l(\cos(\theta_{12}) =
 
\frac{4\pi}{2l+1}\sum^l_{m=-l}{Y^{m}_l}^*(\theta_1,\varphi_1)Y^m_l(\theta_2,\varphi_2)\nonumber
 
\end{equation}
 
 
 
For P-states, one would have similarly
 
\begin{eqnarray}
 
&r_{12}^0&\ \ \ \ \ \ \ \ (sp)P\nonumber\\
 
&r_{12}^2&\ \ \ \ \ \ \ \ (pd)P\nonumber\\
 
&r_{12}^4&\ \ \ \ \ \ \ \ (df)P\nonumber\\
 
&\vdots& \ \ \ \ \ \ \ \ \ \ \vdots\nonumber
 
\end{eqnarray}
 
 
 
For D-states
 
\begin{eqnarray}
 
&r_{12}^0&\ \ \ \ \ \ \ \ (sp)D\ \ \ \ \ \ \ \ (pp^\prime)D\nonumber\\
 
&r_{12}^2&\ \ \ \ \ \ \ \ (pd)D\ \ \ \ \ \ \ \ (dd^\prime)D\nonumber\\
 
&r_{12}^4&\ \ \ \ \ \ \ \ (df)D\ \ \ \ \ \ \ \ (ff^\prime)D\nonumber\\
 
&\vdots& \ \ \ \ \ \ \ \ \ \ \vdots\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots\nonumber\end{eqnarray}
 
 
 
In this case, since there are two ``lowest-order'' couplings to form a
 
D-state, both must be present in the basis set. ie
 
 
 
\begin{eqnarray}
 
\Psi(r_2,r_2) &=& \sum c_{ijk}r_1^ir_2^{j+2}r_{12}^ke^{-\alpha r_1-\beta
 
  r-2}\mathcal{Y}^M_{022}(\hat{r}_1,\hat{r}_2)\nonumber\\
 
&+&\sum d_{ijk}r_1^{i+1}r_2^{j+1}r_{12}e^{-\alpha^\prime r_1 - \beta^\prime
 
  r_2}\mathcal{Y}^M_{112}(\hat{r}_1,\hat{r}_2)\nonumber
 
\end{eqnarray}
 
 
 
For F-states, one would need $(sf)F$ and $(pd)F$ terms.
 
 
 
For G-states, one would need $(sg)G$, $(pf)G$ and $(dd^\prime)G$ terms.
 
 
 
Completeness of the radial functions can be proven by considering the
 
Stern-Liouville problem
 
 
 
\begin{equation}
 
\left(-\frac{1}{2}\nabla^2-\frac{\lambda}{r_s}-E\right)\psi({\bf r}) = 0\nonumber
 
\end{equation}
 
or
 
\begin{equation}
 
\left(-\frac{1}{2}\frac{1}{r^2}\left({r^2}\frac{\partial}{\partial r}\right) -
 
  \frac{l\left(l+1\right)}{2r^2} - \frac{\lambda}{r} - E\right)u(r) = 0.\nonumber
 
\end{equation}
 
for fixed E and variable $\lambda$ (nuclear charge).
 
 
 
The eigenvalues are $\lambda_n = (E/E_n)^{1/2}$, where $E_n =- \frac{1}{2n^2}$
 
 
 
INSERT FIGURE HERE
 
 
 
\begin{equation}
 
u_{nl}(r) =
 
\frac{1}{(2l+1)!}\left(\frac{(n+l)!}{(n-l-1)2!}\right)^{1/2}(2\alpha)^{3/2}e^{-\alpha
 
  r},\nonumber
 
\end{equation}
 
with $\alpha = (-2E)^{1/2}$ and $n\geq l+1$.
 
 
 
Unlike the hydrogen spectrum, which has both a discrete part for $E<0$ and a
 
continuous part for $E>0$, this forms an entirely discrete set of finite
 
polynomials, called Sturmian functions. They are orthogonal with respect to
 
the potential -ie
 
\begin{equation}
 
\int^\infty_0 r^2dru_{n^\prime l}(r)\frac{1}{r}u_{nl}(r) = \delta_{n,n^\prime}\nonumber
 
\end{equation}
 
 
 
Since they become complete in the limit $n\rightarrow\infty$, this assures the
 
completeness of the variational basis set.
 
 
 
[see B Klahn and W.A. Bingel Theo. Chim. Acta (Berlin) {\bf 44}, 9 and 27
 
(1977)].<math>
 
 
 
==Solutions of the Eigenvalue Problem==
 
 
 
===Brute Force Method===
 
 
 
===The Power Method===
 
 
 
==Matrix Elements of H==
 
 
 
==Radial Integrals and Recursion Relations==
 
 
 
===The Radial Recursion Relation===
 
 
 
===The General Integral===
 
 
 
==Graphical Representation==
 
[figure to be inserted]
 
 
 
==Matrix Elements of H==
 
 
 
===Problem===
 
 
 
==General Hermitean Property==
 
 
 
==Optimization of Non-linear Parameters==
 
*Difficulties
 
*Cure
 
 
 
==The Screened Hyrdogenic Term==
 
 
 
==Small Corrections==
 
*Mass Polarization
 

Revision as of 15:13, 20 June 2012

Helium Calculations

\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)

Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then

\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)

But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore

\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)

The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)

[figure to be inserted]

The Hartree Fock Method

Assume that \(\psi({\bf r}_1,{\bf r}_2)\) can be written in the form

<math style="horizontal-align:middle;">\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber</math>

for the \(1S^21S\) ground state

\([-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber\)

Substitute into \(<\psi|H-E|\psi>\) and require this expression to be stationary with respect to arbitrary infinitesimal variations \(\delta u_1\) and \(\delta u_2\) in \(u_1\) and \(u_2\). ie

\(\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2(r_1)\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber\)

\(=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber\)

\(= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber\)

Therefore \(\{\int d{\bf r}_2 \ldots \} = 0\).

Similarly, the coefficient of \(\delta u_2\) would give

\(\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)] = 0\nonumber\)

Define

\(I_{12} = \int dru_1(r)u_2(r), \nonumber\)

\(I_{21} = \int dru_1(r)u_2(r), \nonumber\)

\(H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber\)

\(G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber\)

Then the above equations become the pair of integro-differential equations

\([ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber\)

\([H_0-E+H_{11}+G_{11}(r)]u_2(r) &=& \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber\)

These must be solved self-consistently for the "constants" \(I_{12}\) and \(H_{ij}\) and the function \(G_{ij}(r)\).

The H.F. energy is \(E \simeq -2.87\cdots a.u.\) while the exact energy is \(E = -2.903724\cdots a.u.\)

The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations only describe how one electron moves in the average field provided by the other.

Configuration Interaction

Expand \( \psi({\bf r}_1,{\bf r}_2)&=& C_0u^{(s)}_1(r_1)u^{(s)}_1(r_2) + C_1u^{(P)}_1({\bf r}_1)u^{(P)}_1({\bf r}_2)\Upsilon^0_{1,1,0}(\hat{\bf r}_1, \hat{\bf r}_2)+C_2u^{(d)}_1({\bf r}_1)u^{(d)}_2({\bf r}_2)\Upsilon^0_{2,2,0}(\hat{\bf r}_1, \hat{\bf r}_2)+... \pm\) exchange where \( \Upsilon^M_{l_1,l_2,L}(\hat{\bf r}_1, \hat{\bf r}_2)&=&\Sigma_{m_1,m_2}\Upsilon^{m_1}_{l_1}({\bf r}_1)\Upsilon^{m_2}_{l_2}({\bf r}_2)\times <l_1l_2m_1m_2\mid LM> \).

This works, but is slowly convergent, and very laborious. The best CI calculations are accurate to \( ~10^{-7}\) a.u.

Hylleraas Coordinates

<math> [E.A. Hylleraas, Z. Phys. {\bf 48}, 469(1928) and {\bf 54}, 347(1929)] suggested using the co-ordinates $r_1, r_2$ and $r_{12}$ or equivalently \begin{eqnarray} s &=& r_1 + r_2, \nonumber\\ t &=& r_1-r_2, \nonumber\\ u &=& r_{12}\nonumber \end{eqnarray} and writing the trial functions in the form \begin{equation} \Psi({\bf r}_1,{\bf r}_2) = \sum^{1+j+k\leq N}_{i,j,k}c_{i,j,k}r_1^{i+l_1}r_2^{j+l_2}r_{12}^ke^{-\alpha r_1 - \beta r_2} \mathcal{Y}^M_{l_1,l_2,L}(\hat{r}_1,\hat{r}_2)\pm exchange\nonumber \end{equation} Diagonalizing H in this non-orthogonal basis set is equivalent to solving \begin{equation} \frac{\partial E}{\partial c_{i,j,k}} = 0\nonumber \end{equation} for fixed $\alpha$ and$\beta$.

The diagonalization must be repeated for different values of $\alpha$ and $\beta$ in order to optimize the non-linear parameters.