Difference between revisions of "Theory Notes"

From Dr. GWF Drake's Research Group
Jump to: navigation, search
Line 49: Line 49:
 
Therefore <math>\{\int d{\bf r}_2 \ldots \} = 0</math>.
 
Therefore <math>\{\int d{\bf r}_2 \ldots \} = 0</math>.
  
Similarrily, the coefficient of <math>\delta u_2</math> would give
+
Similarly, the coefficient of <math>\delta u_2</math> would give
  
 
<math>\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm
 
<math>\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm
   u_2(r_1)u_1(4_2)] = 0\nonumber</math>
+
   u_2(r_1)u_1(r_2)] = 0\nonumber</math>
  
 
Define  
 
Define  
Line 64: Line 64:
 
<math>G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber</math>
 
<math>G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber</math>
  
Then the above equations become the pair ofintegro-differential equations
+
Then the above equations become the pair of integro-differential equations
  
 
<math>[ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber</math>
 
<math>[ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber</math>
Line 77: Line 77:
 
The difference is called the "correlation energy" because it arises from the
 
The difference is called the "correlation energy" because it arises from the
 
way in which the motion of one electron is correlated to the other.  The
 
way in which the motion of one electron is correlated to the other.  The
H.F. equations onle describe how one electron moves in the average field
+
H.F. equations only describe how one electron moves in the average field
 
provided by the other.
 
provided by the other.
  

Revision as of 01:37, 1 March 2011

Helium Calculations

\( [-\frac{\hbar^2}{2m}(\nabla^2_1 +\nabla^2_2) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2}+\frac{e^2}{r^2_{12}} ]\psi = E\psi\nonumber \)

Define \(\rho = \frac{Zr}{a_0}\) where \(a_0 = \frac{\hbar^2}{me^2}\) (Bohr radius). Then

\([-\frac{\hbar^2}{2m}Z^2(\frac{me^2}{\hbar^2})^2(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - Z^2\frac{e^2}{a_0}\rho^{-1}_1 - Z^2\frac{e^2}{a_0}\rho^{-1}_2 + \frac{e^2}{a_0}Z\rho^{-1}_{12}]\psi= E\psi\nonumber\)

But \(\frac{\hbar^2}{m}(\frac{me^2}{\hbar^2})^2 = \frac{e^2}{a_0}\) is in atomic units (au) of energy. Therefore

\([-\frac{1}{2}(\nabla^2_{\rho_1}+\nabla^2_{\rho_2}) - \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{Z^{-1}}{\rho_{12}}]\psi = \varepsilon\psi\nonumber\) where \(\varepsilon = \frac{Ea_0}{Z^2e^2}\)

The problem to be solved is thus \([\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}-\frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi = \varepsilon\psi\nonumber\)

[figure to be inserted]

The Hartree Fock Method

Assume that \(\psi({\bf r}_1,{\bf r}_2)\) can be written in the form

<math style="horizontal-align:middle;">\psi({\bf r}_1,{\bf r}_2) = \frac{1}{\sqrt{2}}[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)]\nonumber</math>

for the \(1S^21S\) ground state

\([-\frac{1}{2}(\nabla^2_1+\nabla^2_2) - \frac{1}{r_1}- \frac{1}{r_2} + \frac{Z^{-1}}{r_{12}}]\psi(r_1,r_2) = E\psi(r_1,r_2)\nonumber\)

Substitute into \(<\psi|H-E|\psi>\) and require this expression to be stationary with respect to arbitrary infinitesimal variations \(\delta u_1\) and \(\delta u_2\) in \(u_1\) and \(u_2\). ie

\(\frac{1}{2}<\delta u_1(r_1)u_2(r_2) \pm u_2(r_1)\delta u_1(r_2)|H-E|u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)>\nonumber\)

\(=\int\delta u_1(r_1)d{\bf r}_1\{\int d{\bf r}_2u_2(r_2)(H-E)[u_1(r_1)u_2(r_2)\pm u_2(r_1)u_1(r_2)]\}\nonumber\)

\(= 0 \ \ \ for \ arbitrary \ \delta u_1(r_1).\nonumber\)

Therefore \(\{\int d{\bf r}_2 \ldots \} = 0\).

Similarly, the coefficient of \(\delta u_2\) would give

\(\int d{\bf r}_1 u_1(r_1)(H-E)[u_1(r_1)u_2(r_2) \pm u_2(r_1)u_1(r_2)] = 0\nonumber\)

Define

\(I_{12} = \int dru_1(r)u_2(r), \nonumber\)

\(I_{21} = \int dru_1(r)u_2(r), \nonumber\)

\(H_{ij} = \int d{\bf r}u_i(-\frac{1}{2}\nabla - \frac{1}{r})u_j(r), \nonumber\)

\(G_{ij}(r) = \int d{\bf r}^\prime u_i(r^\prime)\frac{1}{|{\bf r} - {\bf r}\prime|}u_j(r^\prime)\nonumber\)

Then the above equations become the pair of integro-differential equations

\([ H_0 - E + H_{22}+G_{22}(r)]u_1(r) = \mp [ I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_2(r)\nonumber\)

\([H_0-E+H_{11}+G_{11}(r)]u_2(r) &=& \mp [I_{12}(H_0-E) + H_{12}+G_{12}(r)]u_1(r)\nonumber\)

These must be solved self-consistently for the "constants" \(I_{12}\) and \(H_{ij}\) and the function \(G_{ij}(r)\).

The H.F. energy is \(E \simeq -2.87\cdots a.u.\) while the exact energy is \(E = -2.903724\cdots a.u.\)

The difference is called the "correlation energy" because it arises from the way in which the motion of one electron is correlated to the other. The H.F. equations only describe how one electron moves in the average field provided by the other.

Configuration Interaction

For all further sections refer to Dr. Drake's notes

Hylleras Co-ordinates

Completeness

Solutions of the Eigenvalue Problem

Brute Force Method

The Power Method

Matrix Elements of H

Radial Integrals and Recursion Relations

The Radial Recursion Relation

The General Integral

Graphical Representation

[figure to be inserted]

Matrix Elements of H

Problem

General Hermitean Property

Optimization of Non-linear Parameters

  • Difficulties
  • Cure

The Screened Hyrdogenic Term

Small Corrections

  • Mass Polarization