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In previous lectures the nucleus was assumed to be infinitely heavy, thereby
providing an inertial frame of reference. The next level of approximation is to
take into account the finite massM of the nucleus relative to the much smaller
electron mass me. The nucleus then moves in the centre-of-mass frame, and
its motion must be included in the overall dynamics of the full three-body
problem. This introduces an additional term into the Hamiltonian called
mass polarization, and produces what is called the specific isotope shift, in
addition to an overall rescaling of all the energies, called the normal isotope
shift.

The Hamiltonian in an inertial frame as shown in Fig. 1 is

H = − h̄2

2M
∇2

X − h̄2

2m
∇2

x1
− h̄2

2m
∇2

x2
− Ze2

|X− x1|
− Ze2

|X− x2|
+

e2

|x1 − x2|
(1)

with coordinate X for the nucleus and x1 and x2 for the two electrons. In
the absence of external fields, the motion of the centre-of-mass is then an
ignorable coordinate that can be eliminated by transforming to centre-of-
mass plus relative coordinates R, r1, r2 according to

R =
MX+mx1 +mx2

M + 2m
r1 = X− x1 (2)

r2 = X− x2

The transformed Hamiltonian is then

H = − h̄2

2µ
∇2

r1
− h̄2

2µ
∇2

r2
− h̄2

M
∇r1 · ∇r2 −

Ze2

r1
− Ze2

r2
+

e2

|r1 − r2|
(3)

where µ =
meM

me +M
is the electron reduced mass. It is then convenient to
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Figure 1: Inertial coordinate system for the full three-body problem of a helium
nucleus of mass M and two electrons of mass me.

express distances and energies in mass-scaled atomic units according to

ρ = r/aµ (4)

E = E/(e2/aµ) (5)

where aµ =
h̄2

µe2
is the reduced mass Bohr radius, and

e2

aµ
= 2Rµ = 2

µ

me
R∞ =

2

(
1− µ

M

)
R∞ is the reduced-mass unit of energy. The Schrödinger equation

is then (in these mass-scaled atomic units)−1

2
∇2

ρ1
− 1

2
∇2

ρ2
− µ

M
∇ρ1 · ∇ρ2 −

Z

ρ1
− Z

ρ2
+

1

|ρ1 − ρ2|

Ψ = EΨ (6)

In this form, it is formally identical to the Schrödinger equation with the
infinite mass Hamiltonian except for the additional mass-polarization term

HMP = − µ

M
∇ρ1 · ∇ρ2 (7)

If the ratio µ/M is small, then HMP can be treated by perturbation theory
with the perturbation expansions

Ψ = Ψ0 +
µ

M
Ψ1 +

(
µ

M

)2
Ψ2 + · · · (8)

E = E0 +
µ

M
E1 +

(
µ

M

)2
E2 + · · · (9)

2



The zero-order problem is the Schrödinger equation for infinite nuclear mass−1

2
∇2

ρ1
− 1

2
∇2

ρ2
− Z

ρ1
− Z

ρ2
+

1

|ρ1 − ρ2|

Ψ0 = E0Ψ0 (10)

The so-called “normal” isotope shift corresponds to a uniform shift of all the
energies by the common scale factor

∆Enormal = − µ

M

(
µ

m

)
E0 2R∞ (11)

correct to all orders in µ/M . On the other hand, the first-order “specific”
isotope shift due to HMP is different for every state. In first-order, it is given
by the expectation value

∆E
(1)
specific =

µ

M

(
µ

m

)
E1 2R∞ (12)

with E1 = −⟨Ψ0|∇ρ1 · ∇ρ2|Ψ0⟩, and the second-order specific isotope shift is

∆E
(2)
specific =

(
µ

M

)2 ( µ
m

)
E2 2R∞ (13)

with E2 = −⟨Ψ0|∇ρ1 · ∇ρ2|Ψ1⟩ and Ψ1 satisfies the first-order perturbation
equation

(H0 − E0) | Ψ1⟩ − ∇ρ1 · ∇ρ2 | Ψ0⟩ = E1 | Ψ0⟩ (14)

The advantages of organizing the problem in this way are two-fold. First, it
provides a clear separation between the trivially calculated normal isotope
shift due to the mass-scaling of the energies, and the specific isotope shift
due to the mass polarization term. Second, once the coefficients E0, E1 and
E2 are evaluated, the energy for any isotope M of helium can be accurately
calculated according to

EM =
µ

me

E0 + µ

M
E1 +

(
µ

M

)2
E2 +O(µ/M)3

 (15)

Since µ/M ∼ 1.370 745 620×10−4 for 4He, the next term is of order (µ/M)3 ∼
10−12, and so is negligible for most purposes. If higher accuracy is needed,
then the mass polarization term can be included explicitly in the nonrela-
tivistic Hamiltonian and the total energy calculated directly for a specific
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isotope. As an example, the coefficients for the ground state of helium are

E0 = −2.903 724 377 044 1195

E1 = 0.159 069 475 085 84

E2 = −0.470 391 870(1)

Note that since ∇ρ1 · ∇ρ2 has the same angular properties as ρ1 · ρ2, the
operator is like the product of two dipole operators. For product type wave
functions of the form

ψ = ψ1s(r1)ψnl(r2)± exchange (16)

(such as the Hartree-Fock approximation) the matrix element vanishes for all
but the exchange term for P -states. The following table illustrates the point
for the n = 2 states of helium. E1 is an order of magnitude bigger for the
P -states than for the S-states. In contrast, the values of E2 are similar in
magnitude.

First- and second-order mass polarization coefficients
E1 = −⟨Ψ0|∇ρ1 · ∇ρ2|Ψ0⟩ and E2 for the n = 2 states of
helium (in a.u.)

State E1 E2
2 1S 0.009 503 864 419 29(1) –0.135 276 865 15(4)
2 3S 0.007 442 130 706 02(0) –0.057 495 846 2(19)
2 1P 0.046 044 524 928 44(8) –0.168 271 322 5(5)
2 3P –0.064 572 425 026 89(2) –0.204 959 898 4(12)

Because of the special importance of the ∇1 · ∇2 term for P -states, we in-
clude p(1)s(2)-type terms in the basis set; i.e. the angular momenta are in-
terchanged while keeping the nonlinear parameters the same.

Similar results for all states of helium up to n = 10 and L = 7 are given in
G.W.F. Drake and Z.-C. Yan, Phys. Rev. A 46, 2378 (1992), and in Chapter
11 of the Springer Atomic, Molecular and Optical Physics Handbook.
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