Special Topics on Precision Measurement in Atomic Physics: Lecture 8
 Relativistic and QED Effects

Instructor: Gordon W.F. Drake, University of Windsor Sponsored by USTC, Organized by WIPM

October 9 to November 13, 2019

Hydrogenic Atoms

- Uncertainties here limit what can be achieved for more complex systems.
- For hydrogen, the Schrödinger (or Dirac) equation can be solved exactly, and so uncertainties come from QED corrections and the effects of finite nuclear size and structure.
- Relativistic corrections can be expressed as an expansion in powers of $(\alpha Z)^{2}$, and summed to infinity by solving the Dirac equation.
- QED effects (self energy and vacuum polarization) can be written as a dual expansion in powers of αZ and α, but cannot be summed to infinity.

$$
E_{\text {Total }}=E_{\mathrm{NR}}+\Delta E_{\text {rel. }}+\Delta E_{\mathrm{QED}}
$$

where E_{NR} is the nonrelativistic energy, and (in atomic units)

$$
\begin{aligned}
\Delta E_{\text {rel. }} & =\alpha^{2} Z^{4}\left[E_{\text {rel. }}^{(2)}+(\alpha Z)^{2} E_{\text {rel. }}^{(4)}+\cdots\right] \\
\Delta E_{\mathrm{QED}} & =\alpha^{3} Z^{4}\left[\ln (\alpha Z) E_{\mathrm{QED}}^{(3,1)}+E_{\mathrm{QED}}^{(3,0)}+O(\alpha Z)^{2}+O(\alpha / \pi)\right]
\end{aligned}
$$

- QED Terms are known in their entirety up to $O\left(\alpha^{5} Z^{6}\right)$, and so the uncertainty is of $O\left(\alpha^{6} Z^{7}\right)$ (at least in the low-Z region), or a few kHz for hydrogen 2s state [K. Pachucki and U. D. Jentschura, Phys. Rev. Lett. 91,113005 (2003)].
- The proton size discrepancy of 0.84 fm (muonic) - 0.87 fm (electronic) also corresponds to an energy discrepancy of 3 kHz for the 2 s state.

High-Z Hydrogenic Ions

- There has been considerable progress in summing the αZ binding energy corrections to infinity [A. Gumberidze et al., Hyperfine Interact. 199, 59 (2011)]. For U^{91+}, the Lamb shift is $464.26 \pm 0.5 \mathrm{eV}$ theory $460.2 \pm 4.6 \mathrm{eV}$ experiment.
- For excited s-states, the Lamb shifts and uncertainties scale approximately as $1 / n^{3}$ with n and Z^{6} with Z. These uncertainties place a fundamental limit on the accuracy of atomic structure computations.

Methods of Theoretical Atomic Physics.

Method	Typical Accuracy for the Energy
Many Body Perturbation Theory	$\geq 10^{-6}$ a.u.
Configuration Interaction	$10^{-6}-10^{-8}$ a.u.
Explicitly Correlated Gaussians ${ }^{\text {a }}$	$\sim 10^{-10}$ a.u.
Hylleraas Coordinates $(\mathrm{He})^{\mathrm{b}, \mathrm{c}}$	$\leq 10^{-35}-10^{-40}$ a.u.
Hylleraas Coordinates $(\mathrm{Li})^{\mathrm{d}}$	$\sim 10^{-15}$ a.u.

Relativistic Corrections

Nonrelativistic Energy: 1/Z Expansion

$$
E_{\mathrm{NR}}=E_{\mathrm{NR}}^{(0)} Z^{2}+E_{\mathrm{NR}}^{(1)} Z+\underline{E_{\mathrm{NR}}^{(2)}}+\cdots
$$

Relativistic Corrections: $(\alpha Z)^{2}$ and $1 / Z$ Expansions

$$
\begin{aligned}
E_{\mathrm{rel}} & =E_{\mathrm{re}}^{(2,4)} \alpha^{2} Z^{4}+E_{\mathrm{rel}}^{(4,6)}+\cdots \\
& +\underline{E_{\mathrm{rel}}^{(2,3)} \alpha^{2} Z^{3}}+\cdots
\end{aligned}
$$

Cross-over point: $E_{\mathrm{NR}}^{(2)} \simeq E_{\mathrm{rel}}^{(2,3)} \alpha^{2} Z^{3}$ when $\alpha^{2} Z^{3} \simeq 1$, or
$Z \simeq 1 / \alpha^{2 / 3} \simeq 27$

Two Strategies

- $Z<27$: start from the nonrelativistic Schrödinger equation and treat relativistic effects as a perturbation. Uncertainty dominated by relativistic (and QED) corrections.
- $Z \geq 27$: start from the Dirac equation and treat electron correlation effects as a perturbation. Uncertainty dominated by electron correlation corrections.

Current Status for Helium

- Nonrelativistic Energy: Essentially exact
- Relativistic and QED Corrections:
$-\alpha^{2}$ Breit interaction: essentially exact
$-\alpha^{3}$ QED terms: essentially exact
$-\alpha^{4}$ Douglas and Kroll terms: essentially exact but complicated operators [recently completed by Yerokhin and Pachucki PRA 81, 022507 (2010)].
$-\alpha^{5}$ QED terms: can be estimated from the known hydrogenic terms.
- Final uncertainty: $\pm 36 \mathrm{MHz}$ for the ground state ionization energy of helium. This scales roughly as $1 / n^{3}$ with n and Z^{5} with Z.

High-Z Heliumlike lons

- Start from the Dirac equation and use all-orders methods to sum relativistic and QED effects to infinity.
- Dominant source of uncertainty comes from the combined effects of electron correlation and relativistic effects: leading order $(\alpha Z)^{4}$.
- Final uncertainty for $n=2$ is approximately $(Z / 10)^{4} \mathrm{~cm}^{-1}$ or $\pm 0.9 \mathrm{eV}$ for U^{90+}.
- This is an order of magnitude larger than the one-electron QED uncertainty.

Three-electron Atoms

- High precision variational calculations in Hylleraas coordinates are still possible, but the basis sets become much larger (30,000 terms instead of 3000 terms).
- Accuracies are more limited, but spectroscopic accuracy is still possible.
- Only the ground state $1 s^{2} 2 s^{2} S_{2}$ and a few excited states have been calculated in any detail.

Many-Electron Atoms

- Because of difficulties in calculating integrals in fully correlated Hylleraas coordinates $r_{12} r_{23} r_{34} \cdots$, no calculations have been done for more than three electrons.
- General methods of atomic structure are needed.

Important progress by
M.S. Safronova et al. Phys. Rev. A 90, 042513, 052509 (2014), and
B.K. Sahoo et al. Phys. Rev. A 83, 030503 (2011).

Methods to Estimate Uncertainties

- Study convergence as more configurations (or excitations) are added (SDTQ \cdots).
- Compare different methods of calculation.
- Compare with benchmark calculations of higher accuracy, or experimental data.
- Use internal consistency checks, such as length/velocity forms for radiative transitions.
- Estimate order of magnitude for higher-order terms not included in the calculation.

EQUILIVENT NONRELATIVISTIC OPERATORS

Objective: Find equivalent nonrelativistic operators whose expectation values w.r.t. nonrelativistic wave functions give the same results as relativistic operators up to a given order in powers of αZ. Called NRQED in the literature.

Once the operators are known, they can be applied to many-electron wave functions.

Two sources of terms:

1. Nonrelativistic reduction of the Dirac equation. The Foldy-Wouthuysen transformation provides a general procedure for transforming away the contribution of the small component of the Dirac wave function (see for example Messiah, Quantum Mechanics Vol. II. For example a power-series expansion of $E=\left(c^{2} p^{2}+m^{2} c^{4}\right)^{1 / 2}$ yields

$$
\begin{equation*}
E=m c^{2}+\frac{p^{2}}{2 m}+\frac{p^{4}}{8 m^{3} c^{2}}+\cdots \tag{1}
\end{equation*}
$$

In addition, the F.W. transformation yields the spin-orbit interaction and a δ-function term that is characteristic of the Dirac equation.
2. The electron-electron interaction, including dynamical effects due to the motion of the electrons corresponding to the Feynman diagrams

A systematic evaluation of the Feynman diagrams yields the Dirac relativistic form of the Breit interaction (see Akhiezer and Berestetskii, Quantum Electrodynamics, Sect. 38.1, and the Sharcnet Notes Dirac equations 1 and

Relativistic 3.3-3.4)

$$
\begin{equation*}
B_{\mathrm{D}}=\frac{e^{2}}{r_{12}}-\frac{e^{2}}{2 r_{12}}\left[\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}+\frac{\left(\boldsymbol{\alpha}_{1} \cdot \mathbf{r}_{12}\right)\left(\boldsymbol{\alpha}_{2} \cdot \mathbf{r}_{12}\right)}{r_{12}^{2}}\right] \tag{2}
\end{equation*}
$$

Finally, use $\chi=(\boldsymbol{\sigma} \cdot \mathbf{p} / 2 m c) \phi$ to eliminate the small components in favour of the large components.

BREIT INTERACTION OPERATORS

The leading order relativistic corrections of order α^{2} Ry, including the relativistic recoil correction of order $\left(m_{e} / M\right) \alpha^{2}$ Ry, are calculated by first-order perturbation theory

$$
\begin{equation*}
\Delta E_{\mathrm{rel}}=\left\langle\Psi_{J}\right| H_{\mathrm{rel}}\left|\Psi_{J}\right\rangle \tag{3}
\end{equation*}
$$

where Ψ_{J} is an eigenfunction of the nonrelativistic Hamiltonian (??) and $H_{\text {rel }}$ is the relativistic correction operator defined by

$$
\begin{align*}
H_{\mathrm{rel}}= & B_{1}+B_{2}+B_{4}+B_{3 \mathrm{Z}}+B_{3 \mathrm{e}}+B_{\mathrm{ss}}+\frac{m_{e}}{M}\left(\tilde{\Delta}_{2}+\tilde{\Delta}_{3 \mathrm{Z}}\right) \\
& +\gamma\left(2 B_{3 \mathrm{Z}}+\frac{4}{3} B_{3 \mathrm{e}}+\frac{2}{3} B_{3 e \gamma}+2 B_{\mathrm{ss}}\right)+\gamma \frac{m_{e}}{M} \tilde{\Delta}_{3 \mathrm{Z}}, \tag{4}
\end{align*}
$$

with $\gamma=\alpha /(2 \pi)-0.32847(\alpha / \pi)^{2}+\cdots$. The terms containing γ are the corrections due to the electron anomalous magnetic moment. In the above equation,

$$
\begin{gather*}
B_{1}=-\frac{\alpha^{2}}{8}\left(\nabla_{1}^{4}+\nabla_{2}^{4}+\nabla_{3}^{4}\right), \text { variation of mass with velocity } \tag{5}\\
B_{2}=\frac{\alpha^{2}}{2} \sum_{i>j}^{3}\left[\frac{1}{r_{i j}} \nabla_{i} \cdot \nabla_{j}+\frac{1}{r_{i j}^{3}} \mathbf{r}_{i j} \cdot\left(\mathbf{r}_{i j} \cdot \nabla_{i}\right) \nabla_{j}\right], \text { orbit-orbit } \tag{6}\\
B_{4}=\pi \alpha^{2}\left[\frac{Z}{2} \sum_{i=1}^{3} \delta\left(\mathbf{r}_{i}\right)-\sum_{i>j}^{3}\left(1+\frac{8}{3} \mathbf{s}_{i} \cdot \mathbf{s}_{j}\right) \delta\left(\mathbf{r}_{i j}\right)\right], \text { Dirac terms } \tag{7}\\
B_{3 Z}=\frac{Z \alpha^{2}}{2} \sum_{i=1}^{3} \frac{1}{r_{i}^{3}} \mathbf{r}_{i} \times \mathbf{p}_{i} \cdot \mathbf{s}_{i}, \text { spin-orbit } \tag{8}\\
B_{3 \mathrm{e}}=\frac{\alpha^{2}}{2} \sum_{i \neq j}^{3} \frac{1}{r_{i j}^{3}} \mathbf{r}_{j i} \times \mathbf{p}_{i} \cdot\left(\mathbf{s}_{i}+2 \mathbf{s}_{j}\right), \text { spin-other-orbit } \tag{9}\\
B_{\mathrm{ss}}=\alpha^{2} \sum_{i>j}^{3}\left[\frac{1}{r_{i j}^{3}}\left(\mathbf{s}_{i} \cdot \mathbf{s}_{j}\right)-\frac{3}{r_{i j}^{5}}\left(\mathbf{r}_{i j} \cdot \mathbf{s}_{i}\right)\left(\mathbf{r}_{i j} \cdot \mathbf{s}_{j}\right)\right], \text { spin-spin } \tag{10}
\end{gather*}
$$

$$
\begin{gather*}
\tilde{\Delta}_{2}=\frac{i Z \alpha^{2}}{2} \sum_{j=1}^{3}\left[\frac{1}{r_{j}} \mathbf{p} \cdot \nabla_{j}+\frac{1}{r_{j}^{3}} \mathbf{r}_{j} \cdot\left(\mathbf{r}_{j} \cdot \mathbf{p}\right) \nabla_{j}\right], \text { Stone rel. recoil } \tag{11}\\
\tilde{\Delta}_{3 z}=Z \alpha^{2} \sum_{i=1}^{3} \frac{1}{r_{i}^{3}} \mathbf{r}_{i} \times \mathbf{p} \cdot \mathbf{s}_{i}, \text { Stone rel. recoil } \tag{12}\\
B_{3 e \gamma}=\frac{\alpha^{2}}{2} \sum_{i \neq j}^{3} \frac{1}{r_{i j}^{3}} \mathbf{r}_{j i} \times \mathbf{p}_{i} \cdot\left(\mathbf{s}_{i}-\mathbf{s}_{j}\right), \text { anom. Mag. moment } \tag{13}
\end{gather*}
$$

with $\mathbf{p}=\mathbf{p}_{\mathbf{1}}+\mathbf{p}_{\mathbf{2}}+\mathbf{p}_{\mathbf{3}}$.
Terms involving the singular terms $\left\langle r_{i j}^{-2}\right\rangle,\left\langle r_{i j}^{-3}\right\rangle$ and $\left\langle r_{i}^{-3}\right\rangle$ involve significant computational challenges. See L. M. Wang, Chun Li Z.-C. Yan, and G. W. F. Drake, Phys. Rev. A 95, 032504 (2017).

1 Leading-order QED corrections

The leading terms or order α^{3} a.u. (or $\alpha^{5} m C^{2}$ can be written in the form

$$
\begin{equation*}
E_{\mathrm{QED}}=E_{\mathrm{L}, 1}+E_{\mathrm{M}, 1}+E_{\mathrm{R}, 1}+E_{\mathrm{L}, 2} \tag{14}
\end{equation*}
$$

where

- $E_{\mathrm{L}, 1}$ is the mass-independent part of the electron-nucleus Lamb shift (the Kabir-Salpeter term [?]),
- $E_{\mathrm{M}, 1}$ contains mass scaling and mass polarization corrections,
- $E_{\mathrm{R}, 1}$ contains recoil corrections (including radiative recoil),
- $E_{\mathrm{L}, 2}$ is the electron-electron term originally obtained by Araki [?] and Sucher [?].

For example,

$$
\begin{equation*}
E_{\mathrm{L}, 1}=\frac{4 Z \alpha^{3}\left\langle\sum_{i} \delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}}{3}\left\{\ln (Z \alpha)^{-2}-\beta(n L)+\frac{19}{30}\right\} \tag{15}
\end{equation*}
$$

This is the same as the corresponding one-electron case except for the Bethe logarithm term $\beta(n L)$ for the two- or three-electron case, the replacement

$$
\frac{Z^{3}}{\pi n^{3}} \rightarrow \sum_{i}\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle
$$

as the overall multiplying factor.

For a 1 snl state with large l, the asymptotic expansion $[36,37]$

$$
\begin{align*}
\ln k_{0}(1 s n l) \sim & \ln k_{0}(1 s)+\frac{1}{n^{3}}\left(\frac{Z-1}{Z}\right)^{4} \ln k_{0}(n l) \\
& +0.316205(6) Z^{-6}\left\langle r^{-4}\right\rangle_{n l} \\
& +\Delta \beta(1 \mathrm{snl}) \tag{11.41}
\end{align*}
$$

becomes essentially exact. Here $\ln k_{0}(n l)$ is the oneelectron Bethe logarithm [38] and

$$
\left\langle r^{-4}\right\rangle_{n l}=\frac{16(Z-1)^{4}\left[3 n^{2}-l(l+1)\right]}{(2 l-1) 2 l(2 l+1)(2 l+2)(2 l+3)}
$$

(11.42)

The correction $\Delta \beta(1 \mathrm{snl})$ for higher order terms is

$$
\begin{align*}
\Delta \beta\left(1 s n l^{1} \mathrm{~L}\right)= & 95.8(8)\left\langle r^{-6}\right\rangle-845(19)\left\langle r^{-7}\right\rangle \\
& +1406(50)\left\langle r^{-8}\right\rangle \\
\Delta \beta\left(1 s n l^{3} \mathrm{~L}\right)= & 95.1(9)\left\langle r^{-6}\right\rangle-841(23)\left\langle r^{-7}\right\rangle \\
& +1584(60)\left\langle r^{-8}\right\rangle . \tag{11.44}
\end{align*}
$$

For example, for the $1 s 4 f{ }^{1} \mathrm{~F}$ state, $\beta\left(4^{1} \mathrm{~F}\right)=$ $29841271493(3)$

Hylleraas-B-spline basis set and its application of energies, polarizability and Bethe-logarithm of helium

Sanjiang Yang ${ }^{1,2}$, Xuesong Mei ${ }^{1,2}$, Yongbo Tang ${ }^{2}$. Tingyun Shi ${ }^{2}$ and Haoxue Qiao ${ }^{1}$
[1] Department of Physics, Wuhan University, Wuhan 430072, China
[2] State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China

Motivation

- Traditional B-spline basis has been widely used to calculate the spectrum of atomic and molecular systems. This basis has great advantages in describing low lying and continuous states. However, for the lower excited states, especially the ground state, in order to obtain sufficient precision in calculations, this basis requires a large partial-wave expansion length, which leads an unacceptable amount of computation. To describe the wave-function behavior at two-electron coalescences, through coupling the correlation factor $r_{12}=\left|\vec{r}_{1}-\vec{r}_{2}\right|$ with B -spline, we constructed the Hylleraas-B-spline (H -B-spline) basis.

Hylleraas-B-spline

Helium Hamiltonian

$$
\begin{equation*}
H=-{ }_{2}^{1} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{n_{2}} \tag{1}
\end{equation*}
$$

where Z is the nuclear charge number.
Hylleraas-B-spline basis

$$
\begin{equation*}
\phi_{i d d_{1}}\left(\vec{r}_{1}+\vec{r}_{2}\right)=B_{1}\left(r_{1}\right) B_{j}\left(r_{2}\right) r_{12} \Lambda_{i_{1}}^{L M}\left(\hat{r}_{1}, \hat{F}_{2}\right) \pm(\mathrm{L}=2) \tag{2}
\end{equation*}
$$ where $B_{r}(r)$ is the B -spline function which defined in ($0, r_{\text {mima }}$) i is the serial number of B-spline, Λ is the vector coupled product of angular momenta.

Table: Comparison of the static dipole polanzabilities for the live lowest singlet and triplet states of helium Numbers in parentheses are computational uncertainties. Units are a.o.

State	H-B-spline (length gauge)	H-B-spline (velocity gauge)	Hylleraas $\|4\|$
$I^{1} S$	$1.3831921742(3)$	$1.3831921744(1)$	$1.38319217440(5)[5]$
$2^{1} S$	$800.3162331(1)$	$800.3162332(1)$	$800.31633(7)$
$3^{3} S$	$16887.18563(1)$	$16887.18564(1)$	$16887.17(1)$
$I^{1} S$	$135851.5811(1)$	$135851.5812(1)$	$135851.430(1)$
$5^{1} S$	$669586.064(1)$	$669586.0653(1)$	$669585.8982(2)$
$2^{3} S$	$315.63147233(5)$	$315.6314723632(4)$	$315.63147(1)$
$3^{3} S$	$7937.585923(3)$	$79375859256(5)$	$7937.58(1)$
$4^{1} S$	$68650.20892(2)$	$68650.20897(4)$	$68650.061(2)$
$5^{3} S$	$351796.228(1)$	$351796.2291(1)$	$351796.060(2)$
$6^{3} S$	$1314954.976(1)$	$1314954.979(3)$	$1314954.806(3)$

The second and third column listed the results of polarizabilities in two gauges respectively. The different gauges results have at least 9 digits effective number. Comparing with the results in the fourth column, the results of two basis agree well with each other.

Nowrelativistic Bethe-logarithm

In the calculation of energy levels of light few body systems using NRQED approach, the Rethelnararithm (RI) tuna mevraction tarene nead to he mancider
f the extrapolated values are the computational uncertainties. Units are a.u.

H-B-spline [1]	B-spline [2]	Hylleraas [3]
$-2.9037243771(2)$	-2.9035774	-2.9037243770341195
$-2.14597404608(4)$	-2.1459649	$-2.145974046054419(6)$
$-2.06127198976(3)$	-2.0612681	$-2.061271989740911(5)$
$-2.03358671705(3)$	-2.0335850	$-2.03358671703072(1)$
$-2.02117685159(3)$	-2.021175	$-2.021176851574363(5)$
$-2.17522937826(4)$	-2.1752288	-2.17522937823679130
$-2.068689067469(3)$	-2.0686888	-2.06868906747245719
$-2.0365120831(1)$	-2.0365120	$-2.03651208309823630(2)$
$-2.0226188723(1)$	-2.0226188	$-2.02261887230231227(1)$
$-2.0153774530(1)$		$-2.01537745299286219(3)$

cond column of this table are the extrapolated value of H -B-spline under $I_{\text {max }}=4$, 1. Comparing to the results of B-spline listed in the third column, especially for states, the accuracy of results is obviously improved. According to the benchmark ained by Hylleraas basis, our results arrived at least 11 digits effective number. ound state, our result has 7 effective number digits improved comparing to the isis. And in the aspect of rate of energy eigenvalues convergence. H-B-spline is ntage.

Dipole polarizabilities

ipole polarizability for an atom is defined by (in length gauge)

$$
\begin{equation*}
a_{1}^{\prime}=2 e^{2} \Sigma \frac{\left.\left|\left\langle\psi_{0}\right| Z\right| \psi_{n}\right\rangle\left.\right|^{2}}{\left(E_{u}-E_{n}\right)} \tag{3}
\end{equation*}
$$

the direction of electric field. Using $\left[H_{i} p_{i}\right]=r_{i}$, one can get the dipole polarizelocity gauge.

$$
\begin{equation*}
o_{i}^{\prime \prime}=2 e^{2} \Sigma^{\mid} \frac{\left.\left(v_{n}\left|p_{i}\right| v_{n}\right)\right|^{2}}{\left(E_{n}^{\prime}-E_{0}\right)^{3}} \tag{4}
\end{equation*}
$$

calculations of helium polarizabilities, pseudo-states-sum-over approach is effec-eraas-B-spline basis can simultaneously describe higher and lower excited states following table contains the results of helium static polarizabilities in two gauges.

See the following table.
Table: Comparison of nonrelativistic BL for $n^{\text {LI }} S$, n up to 6 , states of helium. Numbers in parentheses are computational uncertainties. Units are a.u.

State	H-B-spline	Hylleraas $[6]$	$1 / n$
$I^{1} S$	$4.370159(1)$	$4.370160218(3)$	
$2^{1} S$	$4.3664123(1)$	$4.36641272(7)$	4.3664127
$3^{\prime} S$	$4.3691644(2)$	$4.369164871(8)$	4.3691648
$4^{1} S$	$4.3698902(3)$	$4.36989066(1)$	4.3698906
$5^{-1} S$	$4.3701514(3)$	$4.3701516(1)$	4.3701520
$6^{1} S$	$4.3702666(3)$		4.3702673
$2^{3} S$	$4.3640364(1)$	$4.36403682(1)$	4.3640354
$3^{3} S$	$4.3686666(1)$	$4.36866692(2)$	4.3686665
$4^{3} S$	$4.3697230(2)$	$4.36972344(5)$	4.3697229
$5^{3} S$	$4.3700782(2)$	$4.37007831(8)$	4.3700791
$6^{3} S$	$4.3702286(4)$		4.3702300

Acknowledgments

This work was supported by the National Natural Science Foundation of China.

References

[II S.J. Yang. X-S. Mei. T-Y. Shi, and H. X. Qiao. Application of the Hylleraas-E-spline basir aet: Static dipole polarizabilities of helium, Phys. Rev. A 95, 062505 (2017).
[2] M.-K. Chen, Accurate oscillator strengths for S.P transitions in the He atom, J. Phys. B 27, 865 (1994)
[3] G. W. F. Drake. Springer Handbook of Atomic Molecular, and Optical Physics. Springer Science 4 Bupiness (2006),
[4] Z.C. Yan, Polarizabilities of the Rydberg states of hellum. Phys. Rev. A 62,052502 (2000)
[5] Z.-C. Yan, J. F. Babb, A. Dalgarno and G. W. F. Drake. Variational calcularions of dispersion coefficients for interactions among H, He. and Li atoms, Phys. Rev. A 54. 2824 (1996).
[6] G. W. F. Drake and S. P. Goldman, Bethe logarithms for PS. H, and helliumlike atoms, Canadian Journal of Physics 77, 835 (1999).
[7] G. W. F. Drake, QED Effects in Helium and Comparisons with High Precision Experment. Physica Scripta 2001, 22 (2001).

Bethe logarithm for the helium atom

Vladimir I. Korobov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia

(0) (Received 20 May 2019; published 26 July 2019)

The Bethe logarithm for a large set of states of the helium atom is calculated with a precision of 12-14 significant digits. The numerical data are obtained for the case of infinite mass of a nucleus. Then we study the mass dependence and provide coefficients of the m_{e} / M expansion, which allows us to calculate accurate values for the Bethe logarithm for any finite mass. An asymptotic expansion for the Rydberg states is analyzed, and a high-quality numerical approximation is found, which ensures 7-8-digit accuracy for the S, P, and D states of the helium atom.

TABLE I. The Bethe logarithm calculations for the ground and excited states of the helium atom with infinite nuclear mass $M_{\mathrm{He}} \rightarrow+\infty$ and comparison with most precise previous calculations.

n	$n^{\prime} S$	$n^{3} S$	$n^{1} p$	$n^{3} P$
1	$4.3701602230703(3)$			
	$4.370160218(3)^{\text {a }}$			
	$4.3701602229(1)^{\text {b }}$			
	$4.37016022306(2)^{\text {c }}$			
2	$4.366412726417(1)$	$4.364036820476(1)$	$4.370097743554(2)$	$4.369985364549(3)$
	$4.36641272(7)^{\text {a }}$	$4.36403682(1)^{\mathrm{a}}$	$4.37009782(3)^{\mathrm{a}}$	4.369985 20(2) ${ }^{\text {a }}$
	$4.3664127262(1)^{\text {b }}$	$4.36403682041(2)^{\text {b }}$	$4.3700977435(1)^{\text {b }}$	$4.3699853644(2)^{\text {b }}$
3	$4.369164860824(2)$	$4.368666996159(2)$	4.370295862 299(4)	4.370235654775 (4)
	$4.369164871(8)^{\text {a }}$	$4.36866692(2)^{\text {a }}$	$4.37029575(9)^{\mathrm{a}}$	$4.3702339(2)^{\text {a }}$
4	4.369890632356 (3)	$4.369723392715(4)$	$4.370363160331(5)$	$4.370334604477(5)$
	$4.36989066(1)^{\mathrm{a}}$	$4.36972344(5)^{\text {a }}$	$4.3703632(2)^{\text {a }}$	$4.37033416(5)^{\text {a }}$
5	$4.370151796310(4)$	$4.370078509668(4)$	$4.370390514367(5)$	4.370375352 464(5)
	$4.3701517(1)^{\text {a }}$	$4.37007831(8)^{\text {a }}$	$4.37039054(4)^{x}$	$4.3703746(2)^{\text {a }}$
6	4.370266974 319(5)	$4.370229062747(5)$	$4.370403502993(6)$	$4.37039462437(2)$
7	$4.370325261772(5)$	$4.370303319792(5)$		
n	$n^{\prime} D$	$n^{3} D$	$n^{\prime} F$	$n^{3} F$
3	$4.370413478422(3)$	4.370420247640 (2)		
	$4.370413470(7)^{\text {d }}$	$4.370420247(2)^{\text {c }}$		
4	4.370417339045 (4)	$4.370421238038(4)$	$4.370421511306(3)$	$4.370421527144(3)$
5	4.37041959774 (2)	$4.37042180990(2)$		

${ }^{2}$ Drake and Goldman [8].
${ }^{\text {b }}$ Yerokhin and Pachucki [19].
${ }^{\text {c }}$ Korobov [16].
${ }^{\mathrm{d}}$ Wienczek et al. [20].

Testing fundamental interactions on the helium atom

Krzysztof Pachucki, ${ }^{1}$ Vojtéch Patkós, ${ }^{2}$ and Vladimir A. Yerokhin ${ }^{3}$
${ }^{1}$ Facuity of Physics, University of Warsaw, Alsteara 5, 02-093 Warsws, Poland
${ }^{2}$ Faculy of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
${ }^{3}$ Center for Advanced Studies, Peter the Great St. Petershurg Polytechnic University, Polvtekhnicheskaya 29, 195251 St. Petersburg, Russia

(Received 10 April 2017; published 27 June 2017)
We critically examine the current status of theoretical calculations of the energies, the fine structure, and the isotope shift of the lowest-lying states of helium, searching for unresolved discrepancies with experiments. Calculations are performed within the quantum electrodynamics expansion in powers of the fine structure constant α and the electron-to-nucleus mass ratio m / M. For energies, theoretical results are complete through orders $\alpha^{6} m$ and $\alpha^{5} m^{2} / M$, with the resulting accuracy ranging from 0.5 to 2 MHz for the $n=2$ states. The fine-structure splitting of the $2^{3} P$ state is predicted with a much better accuracy, 1.7 kHz , as a consequence of a calculation of the next-order $\alpha^{7} m$ effect. An excellent agreement of the theoretical predictions with the recent measurements of the fine structure provides one of the best tests of the bound-state QED in few-electron systems. The isotope shift between ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ is treated with a subkilohertz accuracy, which allows for a high-precision determination of the differences of the nuclear charge radiu ∂r^{2}. Several such determinations, however, yield results that are in a 4σ disagreement with each other, which remains unexplained. Apart from this, we find no significant discrepancies between theory and experiment for the helium atom. A further calculation of the yet unknown $\alpha^{7} m$ correction to energy levels will provide a sensitive test of universality in electromagnetic interactions of leptons by comparison of nuclear charge radii obtained by the helium and muonic helium spectroscopy.

TABLE II. Comparison of the theoretical predictions for vanious transitions in ${ }^{4} \mathrm{He}$ with the experimental results, in MHz IE denotes the ionization energy.

	Experiment/Theory/Difference	Ref.			
$I^{\prime} S_{0}$ (IE)	$\begin{array}{r} 5945204212 .(6) \\ 5945204173 .(36 .) \\ 39 .(36 .) \end{array}$	[26]	$F^{3} P_{0}-3^{3} D_{1}$	$\begin{array}{r} 510059755.352(28) \\ 510059754.0(0.7)^{2} \\ 1.4(0.7)^{2} \end{array}$	[32]
$2^{1} S_{0}$ (IE)	$\begin{array}{r} 960332041.01(15) \\ 960332038.0(1.9) \\ 3.0(1.9) \end{array}$	[27]	$2^{3} p-2^{3} S_{1}$	$\begin{array}{r} 276736495.649(2)^{6} \\ 276736495.4(2.0) \\ 0.2(2.0) \end{array}$	[33]
$1^{1} S_{0}-2^{1} S_{0}$	$\begin{array}{r} 4984872315 .(48 .) \\ 4984872135 .(36 .) \\ 180 .(60 .) \end{array}$	[28]	$2^{3} S_{1}-2{ }^{1} P_{1}$	$\begin{array}{r} 338133594.4(5) \\ 338133594.9(1.4) \\ -0.5(2.2) \end{array}$	[34]
$2^{3} S_{1}-3^{3} D_{1}$	$\begin{array}{r} 786823850.002(56) \\ 786823848.4(1.3)^{7} \\ 1.6(1.3) \end{array}$	[29]	$2^{1} S_{0}-2^{3} S_{1}$	$\begin{gathered} 192510702.1456(18) \\ 192510703.4(0.8) \\ -1.3(0.8) \end{gathered}$	[35]
$2^{1} S_{0}-2^{1} P_{1}$	$\begin{gathered} 145622892.886(183) \\ 145622891.5(2.3) \\ 1.4(2.3) \end{gathered}$	[30]			
$2^{1} P_{1}-3^{1} D_{2}$	$\begin{aligned} & 448791399.113(268) \\ & 448791397.4(0.4)^{b} \end{aligned}$	[31]			

[26] D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, Phys. Rev. A 84, 062512 (2011).
[27] W. Lichten, D. Shiner, and Z.-X. Zhou, Phys, Rev. A 43, 1663 (1991).
[28] S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B. Lucatorto, J. P. Marangos, T. J. Mcllrath, T. R. O'Brian, S. L. Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Cheng, and E. E. Eyler, Phys. Rev. Lett. 80, 3475 (1998).

TABLE IV. Comparison of the theoretical predictions for the $2^{3} p$ fine-structure intervals of ${ }^{4} \mathrm{He}$ with the experimental results, in kHz .

	$2{ }^{3} P_{0}-2{ }^{3} P_{2}$	$2{ }^{3} P_{1}-2{ }^{3} P_{2}$	$2{ }^{3} P_{0}-2{ }^{3} P_{1}$
Theory			
Pachucki and Yerokhin [22]	31908131.4 (1.7)	2291178.9 (1.7)	29616952.5 (1.7)
Experiment			
Zheng et al. [46]	31908130.98 (13)	2291177.56 (19)	
Feng et al. [47]		2291177.69 (36)	
Smiciklas et al. [48]	31908131.25 (30)		
Smiciklas et al. [48] reevaluated in Ref. [45]	31908131.25 (32)		
Borbely et al. [49]		2291177.53 (35)	
Borbely et al. [49] reevaluated in Ref. [45]		2291177.55 (35)	
Zelevinsky et al. [50]	31908126.8 (0.9)	2291175.6 (0.5)	29616951.7 (0.7)
Zelevinsky et al. [50] reevaluated in Ref. [45]	31908126.8 (3.0)	2291176.8 (1.1)	29616951.7 (3.0)
Guisfredi et al. [51]			29616952.7 (1.0)
Guisfredi et al. [51] reevaluated in Ref. [45]			$29616953 .(10.0)$
George et al. [52]			29616950.9 (0.9)
George et al. [52] reevaluated in Ref. [45]			29616950.8 (0.9)
Castillega et al. [53]		2291175.9 (1.0)	
Castillega et al. [53] reevaluated in Ref. [45]		2291177.1 (1.0)	

Ultrahigh-Precision Measurement of the $\boldsymbol{n}=2$ Triplet P Fine Structure of Atomic Helium Using Frequency-Offset Separated Oscillatory Fields

K. Kato, T. D. G. Skinner, and E. A. Hessels ${ }^{*}$
Department of Physics and Astronomy, York University, Toronto, Ontario M3J IP3, Canada

(1) (Received 21 July 2018; published 4 October 2018)

For decades, improved theory and experiment of the $n=2{ }^{3} P$ fine structure of helium have allowed for increasingly precise tests of quantum electrodynamics, determinations of the fine-structure constant α, and limitations on possible beyond-the-standard-model physics. Here we use the new frequency-offset separated-oscillatory-fields technique to measure the $2^{3} P_{2} \rightarrow 2^{3} P_{1}$ interval. Our result of $2291176590(25) \mathrm{Hz}$ represents a major step forward in precision for helium fine-structure measurements.

TABLE V. Determinations of the nuclear charge difference of ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}, \delta r^{2} \equiv r^{2}\left({ }^{3} \mathrm{He}\right)-r^{2}\left({ }^{4} \mathrm{He}\right)$ from different measurements. Units are kHz if not stated otherwise. δE is the part of the isotope shift induced by the finite nuclear size, represented as $\delta E=C \delta r^{2}$, with C being the coefficient calculated from theory.

Determination from Rooij et al, [35]		
$E\left({ }^{3} \mathrm{He}, 2^{1} S^{F-1 / 2}-2^{3} S^{F-3 / 2}\right)-E\left({ }^{4} \mathrm{He}, 2^{1} S-2^{3} S\right)$	-5787719.2(2.4)	Expt. [35]
$\delta E_{\text {bts }}\left(2^{3} S^{3 / 2}\right)$	-2 $246567.059(5)$	Expt. [57,58]
$-\delta E_{\text {iop }}\left(2^{1} S-2^{3} S\right)$ (point nucleus)	8034065.91 (19)	Theory [20,21]
δE	-220.4(2.4)	
C	-214.66 (2) $\mathrm{kHz} / \mathrm{fm}^{2}$	[14]
$8 r^{2}$	1.027 (11) fm^{2}	[21]
Determination from Cancio Pastor et al. [33,55]		
$E\left({ }^{3} \mathrm{He}, 2^{3} \mathrm{P}-2 S\right)$ (centroid)	276702827204.8 (2.4)	Expt. [55]
$-E\left({ }^{4} \mathrm{He}, 2{ }^{3} P-2 S\right)$ (centroid)	-276736495649.5 (2.1)	Expt. [33,48]*
$-\delta E_{\text {iod }}\left(2^{3} p_{-2}{ }^{3} S\right)$ (point nucleus)	33667149.3 (0.9)	Theory [20,21]
δE	-1 295.4 (3.3)	
C	$-1212.2(1) \mathrm{kHz} / \mathrm{fm}^{2}$	[14]
δr^{2}	$1.069(3) \mathrm{fm}^{2}$	[20]
Determination from Shiner et al. [56]		
$E\left({ }^{3} \mathrm{He}, 2^{3} P_{0}{ }^{1 / 2}-2^{3} S_{1}{ }^{3 / 2}\right)-E\left({ }^{4} \mathrm{He}, 2^{3} P_{2}-2^{3} S_{1}\right)$	810599.0 (3,0)	Expt. [56]
$\delta E_{\text {ass }}\left(2^{3} S_{1}^{3 / 2}\right)$	-2246567.059 (5)	Expt. [57,58]
$\delta E_{5 s}\left(2^{3} P_{2}\right)$	-4309074.2 (1.7)	Theory [22]
$-\delta E_{\text {f, hts }}\left(2^{3} p_{0}^{1 / 2}\right)$	-27923393.7 (1.7)	Theory [20,21]
$-\delta E_{\text {iol }}\left(2^{3} P-2^{3} S\right)$ (point nucleus)	33667149.3 (0.9)	Theory [20,21]
δE	$-1286.7(3.5)$	
C	$-1212.2(1) \mathrm{kHz} / \mathrm{fm}^{2}$	[14]
$8 r^{2}$	$1.061(3) \mathrm{fm}^{2}$	[20]

${ }^{2}$ The centroid energy E is obtained as $E=\left(6 E_{0}+3 E_{1}-5 E_{02}\right) / 9$, where $E_{0,1} \equiv E\left(2^{3} S_{1}-2^{3} P_{0,1}\right)$ from Ref. [33] and $E_{12} \equiv E\left(2^{3} P_{0}-2^{3} P_{2}\right)$ from Ref. [48].

PHYSICAL REVIEW A 95, 012508 (2017)

©
 Higher-order recoil corrections for singlet states of the helium atom

Vojtěch Patkóš, ${ }^{1}$ Vladimir A. Yerokhin, ${ }^{2}$ and Krzysztof Pachucki ${ }^{1}$
${ }^{1}$ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
${ }^{2}$ Center for Advanced Studies, Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 Saint Petersburg, Russia

(Received 18 December 2016; published 27 January 2017)
We investigate the finite nuclear mass corrections in the helium atom in order to resolve a significant disagreement between the $2^{3} S-2^{3} P$ and $2^{3} S-2^{1} S$ transition isotope shifts. These two transitions lead to discrepant results for the nuclear charge radii difference between ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$. The accurate treatment of the finite nuclear mass effects is quite complicated and requires the use of the quantum field theoretical approach. We derive the $\alpha^{6} m^{2} / M$ correction with the help of nonrelativistic QED and dimensional regularization of the three-body Coulombic system and present accurate numerical results for low-lying states. The previously reported 4σ discrepancy in the nuclear charge radius difference between ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ from two different atomic isotope shift transitions is confirmed, which calls for verification of experimental transition frequencies.

TABLE VII. Determination of the nuclear charge difference δr^{2} from the measurement by van Rooij et al. in Ref. [11], in kHz .

$E\left({ }^{3} \mathrm{He}, 2^{1} S^{F=1 / 2}-2^{3} S^{F=3 / 2}\right)-E\left({ }^{4} \mathrm{He}, 2^{1} S-2^{3} S\right)$	$-5787719.2(2.4)$	Ref. [11]
$\delta E_{\text {his }}\left(2^{3} S^{3} / 2\right)$	$-2246567.059(5)$	Refs. [19,20]
$-\delta E_{\text {iso }}\left(2^{1} S-2^{3} S\right)$ (point nucleus)	$8034065.91(19)$	Theory, Table VI
δE	$-220.4(2.4)$	
C	$-214.66(2) \mathrm{kHz} / \mathrm{fm}^{2}$	Ref. [7]
$\delta r^{2}=r^{2}\left({ }^{3} \mathrm{He}\right)-r^{2}\left({ }^{4} \mathrm{He}\right)$	$1.027(11) \mathrm{fm}^{2}$	

TABLE I. Expectation values of operators Q_{i} with $i=1, \ldots, 30$ for the $1^{1} S_{0}, 2^{1} S_{0}$, and $2^{\prime} P_{1}$ states.

	$1^{\prime} S_{0}$	$2{ }^{1} S_{0}$	$2^{\prime} P_{1}$
$Q_{1}=4 \pi \delta^{3}\left(r_{1}\right)$	22.750526	16.455169	16,014493
$Q_{2}=4 \pi \delta^{3}(r)$	1.336375	0.108679	0.009238
$Q_{3}=4 \pi \delta^{3}\left(r_{1}\right) / r_{2}$	33.440565	5.593743	3.934081
$Q_{4}=4 \pi \delta^{3}\left(r_{1}\right) p_{2}^{2}$	49.160046	7.578158	3.866237
$Q_{5}=4 \pi \delta^{3}(r) / r_{1}$	5.019713	0.440864	0.012785
$Q_{6}=4 \pi \delta^{3}(r) P^{2}$	18.859765	1.800294	0.070787
$Q_{7}=1 / r$	0.945818	0.249683	0,245024
$Q_{8}=1 / r^{2}$	1.464771	0.143725	0.085798
$Q_{9}=1 / r^{3}$	0.989274	0.067947	0.042405
$Q_{10}=1 / r^{4}$	-3.336384	-0.312402	0.008956
$Q_{11}=1 / r_{1}^{2}$	6.017409	4.146939	4.043035
$Q_{12}=1 /\left(r_{1} r_{2}\right)$	2.708655	0.561861	0.491245
$Q_{13}=1 /\left(r_{1} r\right)$	1.920944	0.340634	0.285360
$Q_{14}=1 /\left(r_{1} r_{2} r\right)$	4.167175	0.398366	0.159885
$Q_{15}=1 /\left(r_{1}^{2} r_{2}\right)$	9.172094	1.472014	1.063079
$Q_{16}=1 /\left(r_{1}^{2} r\right)$	8.003454	1.348761	1.002157
$Q_{17}=1 /\left(r_{1} r^{2}\right)$	3.788791	0.337891	0.105081
$Q_{18}=\left(\vec{r}_{1} \cdot \vec{r}\right) /\left(r_{1}^{3} r^{3}\right)$	3.270472	0.278353	0.010472
$Q_{19}=\left(\vec{r}_{1} \cdot \vec{r}\right) /\left(r_{1}^{3} r^{2}\right)$	1.827027	0.159078	0.043524
$Q_{20}=r_{1}^{i} r_{2}^{j}\left(r^{i} r^{j}-3 \delta^{i j} r^{2}\right) /\left(r_{1}^{3} r_{2}^{3} r\right)$	0.784425	0.063677	-0.004747
$Q_{21}=p_{2}^{2} / r_{1}^{2}$	14.111960	2.064285	1.127058
$Q_{22}=\vec{p}_{1} / r_{1}^{2} \vec{p}_{1}$	21.833598	16.459209	16.067214
$Q_{23}=\vec{p}_{1} / r^{2} \vec{p}_{1}$	4.571652	0.499768	0.190797
$Q_{24}=p_{1}^{i}\left(r^{i} r^{j}+\delta^{i j} r^{2}\right) /\left(r_{1} r^{3}\right) p_{2}^{j}$	0.811933	0.065354	0.053432
$Q_{25}=P^{i}\left(3 r^{i} r^{j}-\delta^{i j} r^{2}\right) / r^{5} P^{j}$	-3.765488	-0.252967	0.013743
$Q_{26}=p_{2}^{k} r_{1}^{i} / r_{1}^{3}\left(\delta^{j k} r^{i} / r-\delta^{i k} r^{j} / r-\delta^{i j} r^{k} / r-r^{i} r^{j} r^{k} / r^{3}\right) p_{2}^{j}$	-0.266894	-0.038928	-0.039 976
$Q_{27}=p_{1}^{2} p_{2}^{2}$	7.133710	1.428213	0.973055
$Q_{28}=p_{1}^{2} / r_{1} p_{2}^{2}$	37.010643	5.955767	3.102248
$Q_{29}=\vec{p}_{1} \times \vec{p}_{2} / r \vec{p}_{1} \times \vec{p}_{2}$	4.004703	0.638960	0.216869
$Q_{30}=p_{1}^{k} p_{2}^{l}\left(-\delta^{j l} r^{i} r^{k} / r^{3}-\delta^{i k} r^{i} r^{l} / r^{3}+3 r^{i} r^{j} r^{k} r^{l} / r^{5}\right) p_{1}^{i} p_{2}^{j}$	-1.591864	-0.252663	-0.126416

Quantum-electrodynamic corrections to the $1 s 3 d$ states of the helium atom

Albert Wienczek, ${ }^{1}$ Krzysztof Pachucki, ${ }^{1}$ Mariusz Puchalski, ${ }^{2}$ Vojtěch Patkóš, ${ }^{3}$ and Vladimir A. Yerokhin ${ }^{4}$
${ }^{1}$ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
${ }^{2}$ Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznañ, Poland
${ }^{3}$ Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
${ }^{4}$ Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya 29, 19525I St. Petersburg, Russia

(Received 3 April 2019; published 10 May 2019)

Abstract

We perform quantum-electrodynamic calculations of the ionization energy of the $1 s 3 d$ states of the ${ }^{4} \mathrm{He}$ atom, including a complete evaluation of the $m \alpha^{6}$ correction. We find a large contribution from the nonradiative part of this correction, which has not been accounted for in previous investigations. The additional contribution shifts theoretical predictions for ionization energies by about 10σ. Despite this shift, we confirm the previously reported systematic deviations between measured experimental results and theoretical predictions for transitions involving $3 D$ states. The reason for these deviations remains unknown.

Drake \& Morton

ALBERT WIENCZEK et al.
PHYSICAL REVIEW A 99, 052505 (2019)

TABLE VII, Comparison of different theoretical predictions with experimental results for various transition energies in ${ }^{4} \mathrm{He}$, in MHz . Theoretical ionization energies of the $n=2$ states in the column "Present theory" are taken from Ref. [5].

Experiment	Ref.	Present theory	Difference from experiment	Other theory [9]	Difference from experiment	
$3^{1} D_{2}-2^{1} S_{0}$	$594414291.803(13)$	$[20]$	$594414289.3(1.9)$	$2.5(1.9)$	$594414292 .(5)$.	$0 .(5)$
$3^{3} D_{1}-2^{3} S_{1}$	$786823850.002(56)$	$[25]$	$786823848.7(1.3)$	$1.3(1.3)$	$786823845 .(7)$.	$4 .(7)$.
$3^{3} D_{1}-2^{3} P_{0}$	$510059755.352(28)$	$[22]$	$510059754.2(0.7)$	$1.2(0.7)$	$510059749 .(2)$	$6 .(2)$
$3^{1} D_{2}-2^{1} P_{1}$	$448791399.113(268)$	$[26]$	$448791397.8(0.4)$	$1.3(0.5)$	$448791400.5(2)$	$-1.4(2)$
			$2 L^{\prime}-2 L$ transitions			
$2^{3} P_{0}-2^{3} S_{1}$	$276764094.6572(14)$	$[3]$	$276764094.5(2.0)$	$0.2(2.0)$	$276764096 .(7)$.	$2 .(7)$.
$2^{1} S_{0}-2^{3} S_{1}$	$192510702.14872(20)$	$[21]$	$192510703.4(0.8)$	$-1.3(0.8)$	$192510697 .(9)$.	$5 .(9)$
$2^{1} P_{1}-2^{3} S_{0}$	$145622892.886(183)$	$[27]$	$145622891.5(2.3)$	$1.4(2.3)$	$145622892 .(5)$.	$0 .(5)$
$2^{1} P_{1}-2^{3} S_{1}$	$338133594.4(5)$	$[28]$	$338133594.9(1.4)$	$-0.5(2.2)$	$338133589 .(7)$.	$5 .(7)$.
			$3 L^{\prime}-3 L$ transitions			
$3^{1} D_{2}-3^{3} D_{1}$	$101143.943(31)$	$[3,20-22]$	$101144.029(23)$	$0.086(37)$	$101143.95(3)$	$0.01(4)$

Isotope shifts and transition frequencies for the S and P states of lithium: Bethe logarithms and second-order relativistic recoil

L. M. Wang, ${ }^{1}$ Chun Li, ${ }^{2}$ Z.-C. Yan, ${ }^{3,4}$ and G. W. E. Drakec ${ }^{4}$
${ }^{1}$ Depariment of Physics, Henan Normal Universiny, Xinxiang, Henan 453007, People's Republic of China
${ }^{2}$ Department of Mathematics, Nanjing Universiny, Nanjing 210093, China
${ }^{3}$ Department of Physics, University of New Brunswick, Fredericton, New Brunswink, Canada E3B 5A3
${ }^{4}$ State Key Laborutory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Acadenyy of Sciences, Wuhan 430071, China and Center for Cold Atom Phywics, Chinese Academy of Sciences, Wuhan 43007J, China
${ }^{5}$ Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 30 January 2017: published 17 March 2017)
Isotope shifts and total transition frequencies are calculated for the $2^{2} S-3^{2} S$ transition of the lithium isotopes ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li},{ }^{1} \mathrm{Li},{ }^{5} \mathrm{Li}$, and the halo nucleus ${ }^{11} \mathrm{Li}$. The accuracy is improved for previously calculated relativistic and quantum electrodynarnic corrections. and in particular a disagreement for the Bethe logarithm is resolved for the ground ${ }^{2} S$ state. Our previous result is copfirned for the $2^{2} P$ state. We use the pseudostate expansion method to perform the sum over virtual intermediate states. Results for the second-order relativistic recoil term of order $\alpha^{2}(\mu / M)^{3}$ Ry are shown to make a significant conatribution relative to the theoretical uncertainty, but because of accidental cancellations the final result for the isotope shift is nearly unchanged. However, the spin-arbit term makes an unexpectedly large contribution to the splitting isotope shift (SIS) for the $2^{2} P_{1 / 2}-2^{2} P_{3 / 2}$ fine structure. increasing the theoretical value for the ${ }^{6} L L^{-}$- $L i$ isotopes to $0.55631(7) \pm 0.001 \mathrm{MHz}$. A comparison is made with high-precision measurements and othet calculations for the SIS and for the total $2^{2} S-3^{2} S$ transition frequency-
L. M. WANG, CHUN LI, Z.-C. YAN, AND G. W. F. DRAKE

TABLE IV. Bethe logarithms for $1 s^{2} 2 s^{2} S, 1 s^{2} 3 s^{2} S$, and $1 s^{2} 2 p^{2} p$ states of lithium, expressed in the form $\beta=\beta^{(0)}+(\mu / M) \beta^{(1)}+$ $\ln \left(Z^{2} \mu / m_{e}\right)$.

N_{1}	N_{2}	$\beta^{(0)}$	$R(\Omega)$	$\beta^{(1)}$	$R(\Omega)$
$1 s^{2} 2 s^{2} S$					
3910	1452	2.980833469	9.587	0.113790737	15.526
3910	2445	2.980923592	8.791	0.113793610	17.772
3910	4109	2.980937643	6.414	0.113801327	0.372
3910	6809	2.980941416	3.724	0.113809084	0.995
∞		$2.980943(1)$		$0.11381(1)$	
Yan et al. [24]		$2.980925(3)$		$0.1136(2)$	
Yan et al. [6]		$2.98106(1)$		$0.11305(5)$	
Puchalski et al. [7]		2.980944 (4)		$0.11381(3)$	
Stanke et al. [27]		2.98093			
$1 s^{2} 3 s^{2} S$					
3910	2445	2.982187350	8.908	0.110628587	-0.1989
3910	4109	2.982209101	10.29	0.110549049	2.372
3910	6809	2.982210691	13.68	0.110520286	2.764
∞		$2.982210(1)$		$0.11050(2)$	
Yan et al. [24]		$2.98240(4)$		$0.111(1)$	
Yan et al. [6]		$2.98236(6)$		$0.1105(3)$	
Stanke et al. [27]		2.98212			
$1 s^{2} 2 p^{2} p$					
4172		2.982243400		0.111183023	
4172	10735	2.982549536	6.435	0.111118489	6.697
4172	18708	2.982565711	7.142	0.111109241	6.978
∞		$2.982568(3)$		$0.111107(2)$	
Yan et al. [6]		$2.98257(6)$		$0.11108(5)$	
Puchalski et al. [7]		$2.98258(7)$		$0.1113(5)$	

TABLE XI. ${ }^{6} \mathrm{Li}-{ }^{7} \mathrm{Li}$ isotope shift in the $2^{2} P_{3 / 2}-2^{2} P_{1 / 2}$ finestructure splitting (SIS). Anom. is the anomalous magnetic moment contribution. All values are in MHz .

Term	Present work	Puchalski et al. [7]
$\alpha^{2} \lambda$	$0.38538(1)$	$0.3975(6)$
$\alpha^{2} \lambda^{2}$	$0.02394(7)$	
Anom.	0.000638	
Mixing [7]	0.14699	0.14699
Total	$0.55631(7) \pm 0.001^{a}$	$0.5447(1) \pm 0.001^{a}$
	Recent Experiment	
Sansonetti et al. $[42]$	$0.594(30)$	
Brown et al. [36]	$0.531(24)^{b}$	

${ }^{2}$ Additional uncertainty due to higher-order QED terms of order $\alpha^{4} \lambda$ Ry is not included in the calculation.
${ }^{\text {b }}$ Includes the effects of quantum interference between unresolvable overlapping lines and laser polarization.

Theoretical contributions to the $1 s^{2} 2 s^{2} S-1 s^{2} 3 s^{2} S$ transition energy (cm^{-1}) of ${ }^{7} \mathrm{Li}$ [Yan \& Drake 2008, Puchalski et al. 2010], and comparison with experiment [Sanchez et al. 2006]. $\mu / M \simeq 7.820 \times 10^{-5}$ is the ratio of the reduced electron mass to the nuclear mass for an atomic mass, and $\alpha \simeq 1 / 137$ is the fine structure constant.

Contribution	Transition Energy $\left(\mathrm{cm}^{-1}\right)$
Infinite mass	$27206.4928479(5)$
μ / M	$-2.295854362(2)$
$\mu / M)^{2}$	0.0001659774
α^{2}	$2.089120(23)$
$\alpha^{2} \mu / M$	$-0.000003457(9)$
α^{3}	$-0.18703(26)$
$\alpha^{3} \mu / M$	$0.00000974(13)$
$\alpha^{4}($ Est.)	$-0.0057(6)$
$\alpha^{5}($ Est.)	$0.00052(13)$
Nucl. size	$-0.000390(10)$
Total	$27206.0937(6)$
Exp't. [?]	$27206.094082(6)$

References

[1] Z. T. Lu, P. Mueller, G. W. F. Drake, W. Nörtershäuser, S.C. Pieper, and Z.-C. Yan, Rev. Mod. Phys. 85, 1383 (2013).
[2] G. W. F. Drake, in Long-range Casimir forces: Theory and recent experiments on atomic systems, edited by F.S. Levin and D.A. Micha (Plenum, New York, 1993), pp. 107-217.
[3] F. Marin, F. Minardi, F. S. Pavone, M. Inguscio, and G. W. F. Drake, Z. Phys. D-Atoms molecules and Clusters 32, 285 (1995).
[4] E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowley, and A. P. Levick, Phys. Rev. A 49, 207-220 (1994).
[5] W. A. Wijngaarden and B. Jian, Eur. Phys. J. Special Topics 222, 2057 (2013).
[6] Z.-C. Yan, W. Nörtershäuser and G. W. F. Drake, Phys. Rev. Lett.100, 243002 (2008).
[7] M. Puchalski, D. Kedziera, and K. Pachucki, Phys. Rev. A 87, 032503 (2013).
[8] L. M. Wang, Z.-C. Yan, H. X. Qiao and G. W. F. Drake, Phys. Rev. A 85, 052513 (2012).
[9] Z.-C. Yan and G. W. F. Drake, J. Phys. B: At. Mol. Opt. Phys. 30, 4723 (1997).
[10] A. P. Stone, Proc. Phys. Soc. 77, 786 (1961); 81, 868 (1963).
[11] L. M. Wang, Z.-C. Yan, H. X. Qiao and G. W. F. Drake, Phys. Rev. A 83, 034503 (2011).
[12] Z.-C. Yan, J. Phys. B: At. Mol. Opt. Phys. 33, 2437 (2000).
[13] R. J. Drachman, J. Phys. B: At. Mol. Opt. Phys., 14, 2733 (1981).
[14] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A.61, 022504 (2000).
[15] W. Nörtershäuser, R. Sánchez, G. Ewald, A. Dax,, J. Behr, P. Bricault, B. A. Bushaw, J. Dilling, M. Dombsky, G. W. F. Drake, S. Götte, H.-J. Kluge, Th. Kühl, J. Lassen, C. D. P. Levy, K. Pachucki, M. Pearson, M. Puchalski, A. Wojtaszek, Z.-C. Yan, and C. Zimmermann, Phys. Rev. A 83, 012516 (2011).
[16] P. K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1256 (1957).
[17] H. Araki, Prog. Theor. Phys. 17, 619 (1957).
[18] J. Sucher, Phys. Rev. 109, 1010 (1958).
[19] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63 (2001).
[20] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 66, 042504 (2002).
[21] K. Pachucki, J. Phys. B 31, 5123 (1998). See also K. Pachucki and J. Sapirstein, J. Phys. B 33, 455 (2000).
[22] G. W. F. Drake, I. B. Khriplovich, A. I. Milstein, and A. S. Yelkhovsky, Phys. Rev. A 48, R15 (1993).
[23] G. W. F. Drake and S. P. Goldman, Can. J. Phys.77, 835 (1999).
[24] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 91, 113004 (2003).
[25] G. W. F. Drake and Z.-C. Yan, Phys. Rev. A.52, 3681 (1995).
[26] Chun Li, Liming Wang and Zong-Chao Yan, Int. J. Quant. Chem., 113, 1307-1315 (2013).
[27] M. Stanke, J. Komasa, D. Kedziera, S. Bubin, and L. Adamowicz, Phys. Rev. A 78, 052507 (2008).
[28] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
[29] Sz. Nagy, T. Fritioff, M. Suhonen, R. Schuch, K. Blaum, M. Björkhage, and I. Bergström, Phys. Rev. Lett. 96, 163004 (2006).
[30] M. Smith, M. Brodeur, T. Brunner, S. Ettenauer, A Lapierre, R. Ringle, V. L. Ryjkov, F. Ames, P. Bricault, G. W. F. Drake, P. Delheij, D. Lunney, F. Sarazin, and J. Dilling, Phys. Rev. Lett. 101, 202501 (2008).
[31] M. Puchalski and K. Pachucki, Phys. Rev. A 78, 052511 (2008).
[32] Y.-H. Lien, K.-J. Lo, H.-C. Chen, J.-R. Chen, J.-Y. Tian, J.-T.Shy, and Y.-W. Liu, Phys. Rev. A 84, 042511 (2011) and earlier references therein.
[33] R. Sánchez et al., New J. Phys. 11, 073016 (2009).
[34] M. Puchalski and K. Pachucki, Phys. Rev. A 92, 012513 (2015).
[35] R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, Phys. Rev. A 87, 032504 (2013).
[36] K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev. 153, 91 (1967).
[37] H. Orth, H. Ackermann, and E. W. Otten, Z. Phys. A 273, 221 (1975).
[38] G. A. Noble, B. E. Schultz, H. Ming, and W. A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006).
[39] J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J. D 22, 159 (2003).
[40] D. Das and V. Natarajan, Phys. Rev. A 75, 052508 (2007).
[41] M. Puchalski and K. Pachucki, Phys. Rev. Lett. 113, 073004 (2014).
[42] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, Phys. Rev. Lett. 107, 023001 (2011); 109, 259901(E) (2012).
[43] C. Schwartz, Phys. Rev. 123, 1700 (1961).
[44] V. Patkós, V. A. Yerokhin, and K. Pachucki, Phys. Rev. A, 95, 012508 (2017).

