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TYPES OF CORRELATED HYLLERAAS BASIS SETS

Consider first the case of helium. In its simplest form, a Hylleraas wave
function looks like

Ψ(r1, r2) =
N∑

m=1

cmφm

where m represents the m’th combination of i, j, k and

φijk = ri1 r
j
2 r

k
12 e

−αr1−βr2 YM
l1,l2,L

(r̂1, r̂2)± exchange

The usual strategy is to include all triplets of powers such that i+ j+k ≤ Ω.
This defines a Pekeris shell, after Chaim Pekeris who did a great deal of work
on helium calculations in the 1950s and 1960s. The objective is then to solve
the generalized eigenvalue problem

HΨ = λOΨ

where H and O are the Hamiltonian and overlap matrices respectively for
this nonorthogonal basis set. The integer Ω is then progressively increased
until the answer has converged to a sufficient degree of accuracy.

Problem: For Ω sufficiently large (about 18 in quadruple precision), the
solution becomes numerically unstable due to round-off error and numerical
linear dependence. This happens even in the one-electron case with a basis
set of the simple form rne−αr for n ≃ 18.

Solution: Double or triple the basis set by including each triplet of powers
i, j, k more than once, but with different nonlinear parameters α(p) and β(p).
After optimization, the basis set then divides naturally into different sectors
with different distance scales. The form is then

Ψ(r1, r2) =
2 or 3∑
p=1

N∑
m=1

c(p)m φ(p)
m
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where p labels the different sectors, and with

φ
(p)
ijk = ri1 r

j
2 r

k
12 e

−αpr1−βpr2 YM
l1,l2,L

(r̂1, r̂2)± exchange

In this way, the basis sets can be extended to much greater sizes and accuracy
within the confines of ordinary quadruple-precision (about 32 decimal digit)
arithmetic. The optimization of the α’s and β’s is deferred until later.

Other Types of Basis set

• Molecular (γ)-basis set: For molecules such as H+
2 , the r12 coordinate

plays the role of the internuclear coordinate, and so a special treatment
is needed to model the vibrational part of the wave function with a γr12
term in the exponent. The molecular basis functions then have the form

φijk = ri1 r
j
2 r

k
12 e

−αr1−βr2−γr12 YM
l1,l2,L

(r̂1, r̂2)± exchange

but with extra high powers of k such that i+ j ≤ Ω as usual, and k in the
range Ωlow ≤ k ≤ Ωhigh with

Ωlow = Np − Ω + (i+ j) ,
Ωhigh = Np + Ω− (i+ j) .

(1)

and Np ≃ 37 [see M. M. Cassar and G. W. F. Drake, J. Phys. B, 37, 2485
(2004)].

• Random all-exponential basis set: The basis functions have the purely
exponential form

φp = e−αpr1−βpr2−γpr12 YM
l1,l2,L

(r̂1, r̂2)± exchange

with the αp, βp, γp chosen quasi-randomly from a few selected intervals
[see V. I. Korobov, Phys. Rev. A 61, 064503 (2000)]. Requires multiple-
precision arithmetic due to numerical cancellation.

HYLLERAAS COORDINATES FOR LITHIUM There are now six
coordinates r1, r2, r3, r12, r23, r31, and so the basis functions are

φijklmn = Ari1 r
j
2 r

k
3 r

l
12 r

m
23 r

n
31 e

−αr1−βr2−γr3 YM
l1,l2,l3,L

(r̂1, r̂2, r̂3)× (spin function)
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where A is the antisymmerization operator for doublet or quartet states.
Include all terms such that i+ j+k+ l+m+n ≤ Ω. The basis set size grows
as Ω6.

Early calculations were done by McKenzie and Drake [PRA 44, 6973 (1991)]
and greatly extended by Zong-Chao Yan and Li-Ming Wang, as will be dis-
cussed later, and also Krzysztof Pachucki, Mariusz Puchalski and co-workers
in Poland.
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VARIATIONAL BOUNDS

For any normalizable trial function Ψtr, the quantity

Etr =
⟨Ψtr | H | Ψtr⟩
⟨Ψtr | H | Ψtr⟩

is an upper bound to the true ground state energy (provided that the spec-
trum is bounded from below!).

PROOF

Even though the exact eigenfunctions ϕm of H are not known, they still exist
in principle, and form a complete basis set (by assumption). It is therefore
possible to expand (generalized Fourier series)

Ψtr =
∞∑

m=0

amϕm

where, by assumption, ⟨ϕm | ϕn⟩ = δm,n, and ⟨ϕm | H | ϕn⟩ = εmδm,n. Also
assume that ⟨Ψtr | Ψtr⟩ = 1. Then, using

∑∞
m=0 |a0|2 = 1, it follows that

Etr = ⟨Ψtr | H | Ψtr⟩

=
∞∑

m=0

|am|2εm

= ε0 +
∞∑

m=1

|am|2(εm − ε0)

Thus Etr ≥ ϵ0.

Exact 

Exact 
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Hylleraas-Undheim-MacDonald Theorem
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Diagram illustrating the Hylleraas-Undheim-MacDonald Theorem. The
λp, p = 1, . . . , N are the variational eigenvalues for an N -dimensional
basis set, and the Ei are the exact eigenvalues of H. The highest λp lie
in the continuous spectrum of H.

• According to the matrix interleaving theorem, each time a new basis func-
tion is added, the old eigenvalues interleave the new. Thus all the eigen-
values must move inexorably downward.

• It follows that all the eigenvalues are upper bounds to the exact energies,
provided only that the correct number of eigenvalues lies lower. (This of
course requires the spectrum to be bounded from below.)
No further orthogonalization is required.
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SOLUTION OF THE EIGENVALUE PROBLEM

Recall how to diagonalize a 2× 2 matrix cos θ sin θ
− sin θ cos θ

 H11 H12

H12 H22

 cos θ − sin θ
sin θ cos θ



=

 cH11 + sH12 cH12 + sH22

−sH11 + cH12 −sH12 + cH22

 c −s
s c



=

 c2H11 + s2H22 + 2csH12 (c2 − s2)H12 + cs(H22 −H11)
(c2 − s2)H12 + cs(H22 −H11) s2H11 + c2H22 − 2csH12


Therefore

(cos2 θ − sin2 θ)H12 = cos θ sin θ(H11 −H22)

and

tan(2θ) =
2H12

H11 −H22

i.e.

cos θ =

(
r + ω

2r

)1/2

sin θ = −sgn(H12)

(
r − ω

2r

)1/2
where

ω = H22 −H11

r =
(
ω2 + 4H2

12

)1/2
E1 =

1

2
(H11 +H22 − r)

E2 =
1

2
(H11 +H22 + r)

Brute Force Method

Gives all the eigenvalues and eigenvectors, but it is slow. First orthonormalize
the N -dimensional basis set; i.e. form linear combinations

Φm =
N∑
n=1

φnRnm (2)
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such that
⟨Φm|Φn⟩ = δm,n (3)

This can be done by finding an orthogonal transformation T such that

TTOT = I =



I1 0 0 . . . 0
0 I2 0 . . . 0
0 0 I3 . . . 0
...

...
... . . . ...

0 0 0 . . . IN


; (4)

Omn = ⟨φm|φn⟩ (5)

and then applying a scale change matrix

S =



1

I
1/2
1

0 0 . . . 0

0 1

I
1/2
2

0 . . . 0

0 0 1

I
1/2
3

. . . 0
...

...
... . . . ...

0 0 0 . . . I
1/2
N


= ST (6)

Then
STTTOTS = 1 (7)

i.e.
RTOR = 1 (8)

with R = TS.

If H is the matrix with elements Hmn = ⟨φm|φn⟩, then H expressed in the
Φm basis set is

H′ = RTHR. (9)

We next diagonalize H′ by finding an orthogonal transformation W such that

WTH′W = λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λN

 (10)
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where λ is the diagonal matrix of eigenvalues. The q’th eigenvector is

Ψ(q) =
N∑
n=1

ΦnWn,q =
∑
n,n′

φn′Rn′,nWn,q (11)

i.e.

c
(q)
n′ =

N∑
n=1

Rn′nWn,q (12)

The Power Method: is based on the observation that if H has one eigen-

value λM that is much bigger than all the rest, and χ =


a1
a2
...

 is an arbitrary

starting vector, then it is always possible to express χ as a linear combination
of the true eigenvectors Ψ(q) in the form χ =

∑N
q=1 xqΨ

(q).

(H)nχ =
N∑
q=1

xqλ
n
qΨ

(q) → xMλn
MΨ(M) (13)

provided xM ̸= 0.

To pick out the eigenvector corresponding to any eigenvalue, write the original
problem in the form

HΨ = λOΨ

(H− λqO)Ψ = (λ− λq)OΨ

Therefore,

GΨ =
1

λ− λq
Ψ (14)

where G = (H− λqO)−1O with eigenvalues
1

λn − λq
.

By picking λq close to any one of the λn, say λn′, then
1

λn − λq
is much larger

for n = n′ than for any other value. The sequence is then

χ1 = Gχ
χ2 = Gχ1

χ3 = Gχ2
...
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until the ratios of components in χn stop changing.

Useful Trick: To avoid matrix inversion and multiplication, note that the
sequence is equivalent to

Fχn = (λ− λq)Oχn−1 (15)

where F = H − λqO. The factor of (λ− λq) can be dropped because this
only affects the normalization of χn. To find χn, solve

Fχn = Oχn−1 (16)

(N equations in N unknowns). Then

λ =
⟨χn|H|χn⟩
⟨χn|χn⟩

(17)
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