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LITHIUM WAVE FUNCTIONS

Construction of wave functions

The basis set is constructed from the terms
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denotes a vector-coupled product of spherical harmonics for the three elec-
trons to form a state of total angular momentum L.

The spin function is now more complicated, and not unique. There are two
possible coupling schemes:
spin(1/2) + spin(1/2) → spin(0) i.e. singlet
spin(0) + sipin(1/2) → spin(1/2)

OR

spin(1/2) + spin(1/2) → spin(1) i.e. triplet
spin(1) + spin(1/2) → spin(1/2)

In the former (singlet) case

χ1 = α(1)β(2)α(3)− β(1)α(2)α(3) (3)

is the spin function with the spin angular momentum 1/2.
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Our work shows that the exclusion of the second linearly independent spin
function does not affect the final convergence of energy eigenvalues.

In (1), the YLM
(l1l2)l12,l3

functions include the lowest powers of r1, r2, and r3 in
order to ensure correct behavior of the wave function as ri → 0.

The variational wave function is a linear combination of the functions ϕ an-
tisymmetrized by the three-particle antisymmetrizer

A = (1)− (12)− (13)− (23) + (123) + (132) . (4)

For a given angular momentum L, the angular coupling for the three electrons
is

(l1, l2, l3) = (0, 0, 0)A for S states

(l1, l2, l3) = (0, 0, 1)A and (0, 1, 0)B for P states

(l1, l2, l3) = (0, 0, 2)A and (0, 1, 1)B for D states, etc..

The inclusion of block (0, 1, 0)B in the P state basis sets, which describes the
core polarization, is crucial in obtaining adequate convergence.

For small basis sets, the gain is barely detectable. However, it becomes essen-
tial when the basis sets become large. With only block (0, 0, 1)A included, the
energy eigenvalue apparently converges to an incorrect value −7.410 136 34
a.u., even if the size of the basis set becomes as large as 1500 terms.

Recall that a similar situation occurs in the two-electron case when the mass
polarization operator ∇1 ·∇2 is included explicitly in the Hamiltonian for the
sp− ps exchange term.

This illustrates that experiments with small basis sets may lead to conclusions
that are incorrect as basis sets become large.

It also illustrates the need to search for all potentially important class of
terms. In the case of the P states, the (0, 0, 1)A and (0, 1, 0)B terms differ
only in their exponential scale factors. Although either set by itself becomes
asymptotically complete in the limit of infinite basis sets, a finite sequence of
calculations may give a false impression of convergence to an energy that is
too high.
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Inclusion of just a few (0, 1, 0)B terms for the P states has an immediate and
dramatic effect for large basis sets. A systematic search for other possible
such terms did not yield a further significant lowering of the energy. However,
this is by no means a proof that none exist, only that they were searched for
and none found. In the case of the 3 2D state, the inclusion of a (0, 2, 0) block
does not change the pattern of convergence.

In generating the finite basis sets, all terms from (1) are nominally included
such that

j1 + j2 + j3 + j12 + j23 + j31 ≤ Ω , (5)

and the convergence of the eigenvalues studied as Ω is progressively increased.

However, terms which may potentially cause near linear dependences should
be excluded. For example, if l1 = l2 and α ≈ β, then terms with j1 > j2 should
be omitted, as well as terms with j1 = j2 when j23 > j31. The presence of
the near linear dependences in the basis set can be detected by diagonalizing
the positive definite overlap matrix to see if there is an abnormally small or
negative eigenvalue.
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MULTIPLE BASIS SETS

For the two-electron case it was sufficient to double (or triple) the basis set
to obtain adequate convergence and avoid linear dependence.

For lithium, the total basis set is divided into several sectors with different
scale factors α, β, and γ. These are then separately optimized for each sector.

This strategy dramatically improves the accuracy for a given total number
of terms in the basis set. However, the details are more complicated.

instead of simply duplicating the terms in each block and assigning indepen-
dent scale factors as in the helium calculations, the first block (0, 0, L)A is
divided into five sectors according to correlations among the three electrons
as follows:

Sector 1 : all j12 , j23 = 0 , j31 = 0

Sector 2 : all j12 , j23 = 0 , j31 ̸= 0

Sector 3 : all j12 , j23 ̸= 0 , j31 = 0

Sector 4 : j12 = 0 , j23 ̸= 0 , j31 ̸= 0

Sector 5 : j12 ̸= 0 , j23 ̸= 0 , j31 ̸= 0 .

This scheme has an obvious significance in terms of which correlations are
contained in each sector.

A complete optimization of the nonlinear parameters leads to a natural divi-
sion of the basis set into these five sectors with quite different distance scales.
Therefore, a complete optimization is important not only for improving the
variational eigenvalues, but also for preserving the numerical stability of the
wave function, especially when Ω is large.
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The complete basis sets thus contain five sectors for S-states, and six sectors
for P - and D- states when the (0, 1, 0)B or (0, 1, 1)B blocks are included.
Finally, the size of each sector is separately controlled by assigning to each
an Ωi value according to

{Ω1,Ω2,Ω3,Ω4,Ω5} = {Ω,Ω,Ω,Ω,Ω} , L = 0

{Ω1,Ω2,Ω3,Ω4,Ω5,Ω6} = {Ω,Ω, (Ω, 7)min, (Ω, 7)min, (Ω, 7)min,Ω− 2} , L = 1

{Ω1,Ω2,Ω3,Ω4,Ω5,Ω6} = {Ω,Ω,Ω,Ω,Ω, (Ω− 2, 3)min} , L = 2 ,

where (a, b)min denotes min(a,b). The resulting truncations of the basis set in
the indicated sectors have been carefully studied to verify that they do not
significantly affect the eigenvalue convergence pattern.

NONRELATIVISTIC EIGENVALEUS

As before, the nonlinear parameters are optimized by calculating analytically
the derivatives

∂E

∂α
= 2⟨Ψ|H|∂Ψ

∂α
⟩ − 2E⟨Ψ|∂Ψ

∂α
⟩ , (6)

where α represents any nonlinear parameter, H is the Hamiltonian of lithium,
and the normalization ⟨Ψ|Ψ⟩ = 1 is assumed. Newton’s method is used to
locate the zero’s of the first derivatives. Provided that the initial αi, βi, and
γi are chosen close to a minimum, the procedure converges in a few iterations.
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The following table lists the results for the nonrelativistic energies, together
with a detailed account of the convergence process as the size of the basis set
is enlarged.

Nonrelativistic energies for the 1s22s 2S, 1s22p 2P , and 1s23d 2D states of
lithium, in atomic units.

Ω No. of terms E(Ω) R(Ω)

1s22s 2S
2 18 –7.477 311 711 30
3 50 –7.477 984 835 87
4 120 –7.478 052 568 65 9.938
5 256 –7.478 059 384 23 9.938
6 502 –7.478 060 203 73 8.317
7 918 –7.478 060 310 46 7.678
8 1589 –7.478 060 321 56 9.611
∞ –7.478 060 323 10(31)

1s22p 2P

2 19 –7.409 722 805 8
3 55 –7.410 100 606 3
4 138 –7.410 150 289 3 7.604
5 306 –7.410 155 458 5 9.611
6 622 –7.410 156 380 9 5.604
7 1174 –7.410 156 500 2 7.733
8 1715 –7.410 156 518 4 6.540
∞ –7.410 156 521 8(13)

1s23d 2D
2 19 –7.335 271 380 14
3 57 –7.335 484 754 84
4 148 –7.335 520 359 81 5.993
5 340 –7.335 523 158 86 12.720
6 586 –7.335 523 488 10 8.502
7 1002 –7.335 523 534 71 7.064
8 1673 –7.335 523 540 35 8.253
∞ –7.335 523 541 10(43)

hline
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COMPARISONS WITH OTHER CALCULATIONS

Table 1: Comparison with other calculations for the nonrelativistic energies of lithium, in
atomic units.
Author Method Ref. 1s22s 2S 1s22p 2P 1s23d 2D
Larsson (68) 100-term Hy. [11] –7.478 025
Ahlenius and Larsson (73) 78-term Hy. [12] –7.409 99
Sims and Hagstrom (75) 150, 120-term CI-Hy. [13] –7.478 023 –7.410053
Ahlenius and Larsson (78) 97-term Hy. [14] –7.410 078
Muszyńska et al. (80) 139, 120-term CI-Hy. [15] –7.478 044 –7.410 097
Ho (81) 92-term Hy. [16] –7.478 031
Pipin and Woźnicki (83) 170-term CI-Hy. [17] –7.478 044 –7.4101 06
King and Shoup (86) 352-term Hy. [4] –7.478 058
Kleindienst and Beutner (89) 310-term Hy. [18] –7.478 058 24
King (89) 602-term Hy. [5] –7.478 059
King and Bergsbaken (90) 296-term Hy. [19] –7.478 059 53
Jitrik and Bunge (91) Extrapolated CI [20] –7.478 062 4(7)
Chung et al. (91-93) Full core plus corr. [9] –7.478 059 7(9) –7.410 157 8(9) –7.335 523 9
McKenzie and Drake (91) 1134-term Hy. [6] –7.478 060 326(10)
Pipin and Bishop (92) 1618, 1454, 1478 CI-Hy. [7] –7.478 060 1 –7.410 155 4 –7.335 523 1
Lüchow and Kleindienst (92) 976-term Hy. [8] –7.478 060 25
Tong et al. (93) Extrapolated MCHF [21] –7.478 060 9 –7.410 153 1
Present work –7.478 060 323 10(31) –7.410 156 521 8(13) –7.335 523 541 10(43)
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Alternative Spin Coupling Chains.
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Young
Tableaux

χ1 = [α(1)β(2)− β(1)α(2)]α(3)

χ2 = 2α(1)α(2)β(3)− [α(1)β(2) + β(1)α(2)]α(3)

The complete wave function is

ψ = A(ϕ1χ1 + ϕ2χ2)

where A is the total antisymmetrizer

A = e− (12)− (13)− (23) + (123) + (132)

Question: Do we need both χ1 and χ2?

8



Larsson’s Argument

Sven Larsson, Phys. Rev 169, 59 (1968).

Suppose that a function ψ1 = A{ϕ · (αβ − βα)α} is contained in the ba-
sis set. Now we can generate new functions by permuting the labels in ϕ.
The key point is that this is equivalent to permuting the spin labels after
antisymmetrization, multiplied by the original ϕ. For example

ψ′ = A{(13)ϕ · (αβ − βα)α} = −A{ϕ · (αβα− ααβ)}

and
ψ′′ = A{(23)ϕ · (αβ − βα)α} = −A{ϕ · (ααβ − βαα)}

Since there are only two doublet spin functions, ψ1, ψ
′, and ψ′′ are not all

linearly independent. Choose ψ1 and ψ12, where

ψ12 = ψ′ − ψ′′ = A{[(13)− (23)]ϕ · (αβα− βαα)}
= A{ϕ · (2ααβ − βαα− αβα)}

Note that if ϕ has exact (12) symmetry, then

[(13)− (23)]ϕ ≡ 0

For example, if
ϕ(r1, r2, r3) = ϕ1s(r1)ϕ1s(r2)ϕ2s(r3)

then [(13)− (23)]ϕ ≡ 0.
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