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ANGULAR COEFFICIENTS FOR MATRIX ELEMENTS OF H

Recall that the matrix elements of H have the form

⟨F ′ |H| F⟩ =
∑
Λ

∫
dτr CΛ (1)PΛ (cos θ)F

′HΛF (1)

where ∫
dτr =

∫ ∞

0
r1 dr1

∫ ∞

0
r2 dr2

∫ r1+r2

|r1−r2|
r dr (2)

and

HΛ = −1

8

A1(Λ)

r21
+
B1 + 8

r1
+
C1

r2
+D1 +D2 +

A2(Λ)

r22
+
B2 + 8(Z − 1)/Z

r2
+
C2

r2


+ Z−1

(
1

r
− 1

r2

)
(3)

with A1(Λ), B1, C1, and D1 defined by

A1(Λ) = −(1− x)a2+ + a2− + xa+ + 2(1− x

2
)Λ(Λ + 1)− 2l1(l1 + 1)(1− c−

c+
)

− 2l′1(l
′
1 + 1)(1 +

c−
c+

)− 2c−a−
c+

(a+ + 1) (4)

B1 = 2

[
(1− x)α+(a+ + 2)− α−a− − 2(1− x

2
)α+

+
c−
c+

[a−α+ + α−(a+ + 2)]

]
(5)

C1 = (1− x)c2+ + c2− + 2(1− x

2
)c+ (6)

D1 = −(1− x)α2
+ + α2

− − 2
c−
c+
α−α+ (7)

and similarly for A2(Λ), B2, C2, and D2. One of the advantages of this
formula is that it only requires the angular coefficients CΛ(1) corresponding
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to the overlap integral. The general formula for these coefficients for states
of arbitrary angular momentum L is [see G.W.F. Drake, Phys. Rev. A 18,
820 (1978), Eq. (20)]

CΛ(1) =
(−1)L+Λ

2
(2Λ + 1)[(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)]1/2

×
(
l′1 l1 Λ
0 0 0

) (
l′2 l2 Λ
0 0 0

) {
L l1 l2
Λ l′2 l′1

}
(8)

expressed in terms of 3-j and 6-j symbols. If one of the two electrons is in an
s-state, then there is only one nonvanishing coefficient. For the direct integral
with l1 = l′1 = 0 and l2 = l′2 = L, it is C0(1) = 1/2 and for the corresponding
exchange integral it is CL(1) = 1/2.

ROLE OF DEPENDENT AND INDEPENDENT VARIABLES FOR
THE GRADIENT OPERATOR ∇1

There is a possible point of confusion concerning the effect of the gradient
operator ∇1 or ∇2

1 acting on powers of r12. Even though we are regarding r12
as an independent variable for the purposes of evaluating integrals, it remains
(by definition) a dependent variable when calculating partial derivatives with
respect to r1 while holding r2 fixed. By definition, the partial derivatives
in ∇1 mean “change r1 while holding r2 fixed,” and so r12 = |r1 − r2| must
necessarily change in concert. The correct procedure is easily seen by writing
out the derivatives in cartesian coordinates with

∇1 = î
∂

∂x1
+ ĵ

∂

∂y1
+ k̂

∂

∂z1
(9)

and
r12 =

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]1/2

(10)

It is then immediately obvious that

∇1r12 =
1

r12

[̂
i(x1 − x2) + ĵ(y1 − y2) + k̂(z1 − z2)

]

=
r12
r12

(11)

Similarly ∇2r12 = −r12/r12.
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OPTIMIZATION OF NONLINEAR PARAMETERS

The traditional method of performing Hylleraas calculations is to write the
basis set in the form

Ψ =
∑
i,j,k

ci,j,kφi,j,k(α, β)± exchange (12)

with
φi,j,k(α, β) = ri1 r

j
2 r

k
12 e

−αr1−βr2 YM
l1l2L

. (13)

The usual procedure is to set α = Z so that it represents the inner 1s electron,
and then to vary β so as to minimize the energy.

Exact 

Since β appears in Ψ as a nonlinear parameter, the entire calculation must be
repeated for each value of β. However, the minimum becomes progressively
lower as the basis set is enlarged.

Exact 
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Difficulties:

1. If the basis set is constructed so that i + j + k ≤ N , the the number of
terms is

(N + 1)(N + 2)(N + 3)/6 (14)

For example, N = 14 already gives 680 terms and an accuracy of about
1 part in 1010 for low-lying states. A substantial improvement in accu-
racy would require much larger basis sets, together with multiple precision
arithmetic to avoid loss of significant figures when high powers are included.

2. The accuracy rapidly deteriorates as one goes to more highly excited
states—about 1 significant figure is lost each time the principle quantum
number is increased.

Cure: Doubled Basis Sets

We have found that writing basis sets in the form

Ψ =
∑
i,j,k

[
c
(1)
i,j,kφijk(α1, β1) + c

(2)
ijkφijk(α2, β2)

]
± exchange

= ψ(r1, r2)± ψ(r2, r1)

so that each combination of powers is included twice with different nonlinear
parameters (i.e. a doubled basis set) gives a dramatic improvement in accu-
racy for basis sets of about the same total size [first introduced in the paper
G.W.F. Drake, Phys. Rev. Lett. 59, 1549 (1987)].

However, the optimization of the nonlinear parameters is now much more
difficult, and an automated procedure is needed to find the minimum energy
on a multidimensional energy surface.

The optimization can be efficiently done if derivatives of the energy w.r.t. the
α’s and β’s are calculated. Starting from

E =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

(15)

and assuming that ⟨Ψ|Ψ⟩ = 1, then

∂E

∂αt
= −2⟨Ψ|H − E|r1ψ(r1, r2;αt)± r2ψ(r2, r1;αt)⟩ (16)
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where
ψ(r1, r2;αt) =

∑
i,j,k

c
(t)
ijkφijk(αt, βt) (17)

For example, Newton’s method can be used to locate simultaneously the zeros
of the first derivatives in an iterative procedure.

Homework Problems:

1. Prove the above equation for ∂E
∂αt

.

2. Prove that there is no contribution from the implicit dependence of c
(t)
ijk on

αt if the linear parameters have been optimized.

THE SCREENED HYDROGENIC TERM

For Rydberg states, it is advantageous to include explicitly the screened hy-
drogenic term in the basis set, since for high L it gives correctly the first
several figures in the energy. The screened hydrogenic energy is (in Z-scaled
a.u.)

ESH = −1

2

 1

n21
+

(
Z − 1

Z

)2 1

n22

 (18)

so that

H − ESH = −1

8

A1

r21
+
B1 + 8

r1
+
C1

r2
+D1 +D2 −

4

n21
−
(
Z − 1

Z

)2 4

n22

+
A2

r2
+
B2 + 8(Z − 1)/Z

r2
+
C2

r2

+ Z−1
(
1

r
− 1

r2

)

This corresponds to writing the Hamiltonian in the form (in Z-scaled a.u.)

H = H0(r1, Z) +H0(r2, Z − 1) + Z−1
(
1

r
− 1

r2

)
(19)

with

H0(r1, Z) = −1

2
∇2

1 −
1

r1
(20)

and

H0(r2, Z − 1) = −1

2
∇2

2 −
Z − 1

Z

1

r2
(21)
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then the eigenvectors of H0 = H0(r1, Z) + H0(r2, Z − 1) are products of
hydrogenic orbitals

Ψ0 = ψ0(1s, Z)ψ0(nl, Z − 1) (22)

and the eigenvalue is

ESH =

−1

2
−
(
Z − 1

Z

)2 1

2n2

Z2 a.u. (23)

called the screened hydrogenic eigenvalue.

For high-L Rydberg states, ESH and Ψ0 are already excellent approximations.
For example, for the 1s8d states, the energies are

E(1s8d 1D) = −2.007 816 512 563 81 a.u.

E(1s8d 3D) = −2.007 817 934 711 71 a.u.

ESH = −2.007 812 5 a.u.

It is therefore advantageous to include the screened hydrogenic terms in the
basis set so that the complete trial function becomes

Ψ = c0Ψ0 +
∑
ijk

[
c
(1)
ijkφijk(α1, β1) + c

(2)
ijkφ(α2, β2)

]
± exchange (24)

Also, the variational principal can be re-expressed in the form

E = ESH +
⟨Ψ|H − ESH|Ψ⟩

⟨Ψ|Ψ⟩
(25)

so that the ESH term can be cancelled analytically from the matrix elements,
thereby avoiding numerical cancellation. For example

⟨Ψ0|H0 − ESH|Ψ0⟩ = 0 (26)

and

⟨φijk|H − ESH|Ψ0⟩ = Z−1⟨φijk|
1

r
− 1

r2
|Ψ0⟩ (27)

There is also cancellation in the matrix elements themselves that can be
removed to avoid numerical cancellation. Recall that

I0(a, b, c) =
2

c+ 2

[c+1]/2∑
i=0

 c+ 2
2i+ 1

 [f(p, q; β) + f(p′, q′;α)] (28)
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where

f(p, q;x) =
q!

xq+1(α + β)p+1

p∑
j=0

(p+ j)!

j!

(
x

α + β

)j
(29)

where
p = a+ 2i+ 2 p′ = b+ 2i+ 2

q = b+ c− 2i+ 2 q′ = a+ c− 2i+ 2

If β ≪ α, then f(p, q; β) ≫ f(p′, q′;α) and the j = 0 term is the dominant
contribution to f(p, q; β). However, since this term depends only on the sum

of powers b+ c for r2, it cancels exactly from the matrix element of
1

r12
− 1

r2
and can therefore be omitted in the calculation of matrix elements, thereby
saving many significant figures. This is especially valuable when b+ c is large
and a is small.
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