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We have already seen that a simple structure emerges for states of high
angular momentum.

Variational energies for the n = 10 singlet and triplet states of helium.
State Singlet Triplet
10 S —2.005142991747919(79) —2.005310794915611 3(11)
10 P —2.004 987983802217 9(26) —2.005 068 805497 706 7(30)
10 D —2.00500207165425681(75) —2.005002 818 080228 84(53)
10 F —2.00500041756466880(11) —2.005000421 686 604 88(26)
10 G —2.005000112764 318 746(22) —2.005000112777003317(21)
10 H —2.005000039214394532(17) —2.005000039 214417 416(17)
10T —2.005000016 086516 1947(3) —2.005000016 086 516 2194(3)
10 K —2.0050000073883758769(0) —2.005000007 388 3758769(0)

—2.005000- - - is the screened hydrogenic eigenvalue Egy = —2 — 1/(2n?)
with n = 10. Note that for the K-states, the difference between the singlet
and triplet energy is no longer visible. The correction to Fgy is then fully
accounted for by a core-polarization model.



ASYMPTOTIC EXPANSIONS

Core Polarization Model (A. Dalgarno, R. Drachman)

e neglect exchange.

e Rydberg electron moves in the field generated by the polarizable core.

Polarizable core Rydberg electron

[llustration of the physical basis for the asymptotic expansion method in
which the Rydberg electron moves in the field generated by the polarized
core.
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Then

(Z -1

Abu == 2n?

+ (o [ AV(2) [ x0) + {xo [ AV (2) | x1)

where | xo) = unperturbed wave function for the Rydberg electron, and
| x1) = first-order perturbation correction to | xo) due to AV (z); i.e.

[ho(z) — eo] | x1) + AV (z) | x0) =] x0){x0 | AV () | x0)

All calculations can be done analytically, using methods of Dalgarno and
Stewart (1956-60) and Cohen and Dalgarno (1961-66), especially the “Dal-
garno Interchange Theorem.”

See G.W.F. Drake, Adv. At. Mol. Opt. Phys. 31, 1 (1993).



MATHEMATICAL FORMULATION

(See G.W.F. Drake, Adv. At. Mol. Opt. Phys. 31, 1(1993). Treat the inner
and outer electrons as distinguishable particles and ignore exchange. We can
then write the Hamiltonian in the form

1 Z 1 Z -1 1 1

H=—-v2_2 _2y2_ _ - 1
QVT r QVI v (\r—x| 3:) (1)
ho(r, Z) — holz, Z —1) AV (r,x)

Assume that x >> r and expand

1 1 ool
R 7P A . A~ 2
> A )

:|r—x|_x

AV (r,x)

Note that the [ = 0 term cancels. Consider first the [ = 1 term as a small
perturbation. Then AV = r cos#/x?. The unperturbed problem is

lho(r, Z) + ho(x, Z — 1) — Egu|¥(r,x) =0 (3)
where U(r, ) has the separable product form
\D(Ta .T) = SOIS(T)XTLZ('Q:) (4)

The first-order energy vanishes, and second-order energy is

AFEy =
> (15 () () | =% | o (r)xn(@)) (pr (r)xa () | "% | (prs(r)xn(2))
Kk Dy + dy
(5)
where

Dx = Ei,— Lk

dr, = en — ey

Now expand the denominator is a power series

1 1
Dy +d; Dy




The leading term gives

AEQ =

> (ors(r)xmn(@) | =37 | om () xi(@)) (om () xi(@) | =55 | (01s(r)xu (@)
D

Kk K

(7)

Since the integrals over r and x are independent, and d; no longer appears
in the denominator, we can complete the sum over k by closure

Xk: | xx) (xe |= 1

and regroup the terms in the form

1 (p15 | rcosO | pr) (oK | rcosh | pis
AEQ - <an | E ‘ an> Z DK >
an

= —§<an | ;4 | Xni) (8)

where
(p15 | Tcost | px){pK | rcosb | o) (9)

Dk

a1 = —22
K

is the dipole polarizability.

Perturbation Calculation of oy

a1 can be calculated exactly by solving the perturbation equation for hydro-
genlike He™ (see problem)

(ho — Eo)) + r cos 99052) =0 (10)
Then
o = 2(p" [ reosd | )
9
= — 11
2z4 ( )
Also, for the expectation value of 1/z*
16[3n? — 1
(Y = 6[3n* — (1 + 1)] (12)
n?(20 + 3)(20 4+ 2)(21 + 1)(20)(21 — 1)



The total is thus

(13)

1(9) 16(300 — 7 - 8)

AE, = —= [ =
2 2\32)17-16-15-14- 13

This gives AE, = —5=22% o = —0.000 000007 393341 95 - - -.

Higher values of [ in AV give quadrupole, octupole, ... corrections. This is
called the adiabatic approximation.

Asymptotic expansion for the energy of the 1s10k state of helium

Quantity Value

—72/2 —2.000 000 000 000 000 00
—1/(2n%)  —0.005 000 000 000 000 00
cy(r=4) —0.000 000007 393 341 95
Total -2.005000007 393 341 95
Variational —2.005000007 388 3758769(0)
Difference  —0.000 000 000 004 966 08

~ 33 kHz

Nonadiabatic Corrections

The next term in the expansion

1 1
Dk +d, Dy

1—l;l’;+<g’;>2+---] (14)

ie. —g—’; gives the leading nonadiabatic correction. The contribution to the

second-order energy is

AEY =
di{o1s(r)xn () | %0 | or (r)xi (@) {or () xa () | 252 | {14(r)xm(2))
e D%

(15)



The trick now is to replace d = e,; — e; by the operator e,; — h(z) inside the
matrix element so that the numerator NV x summed over k becomes

SN = Slens(r) ) | P fewt — h(a)] o () xe(a)
< (o rxe(a) | "2 | (on () xalo) (16)

Once again the sum over k£ can be completed by closure, and the matrix
elements factored into independent parts to obtain

%NM = {@15(r) | rcosd [ pr(r)){ex(r) [ reost | ¢is(r))
X ) | —glent = h)]-g | xoul@)) (17)
Next commute the operator e,; — h(x) through to the right and use
[ent = P(@)] | Xut) = 0
to obtain the remaining part (x,;(z) | 72(Vax™2)-V | xu(z)). An integration
by parts then yields the final result for the matrix element

1

() [ 272(Va™) - V| xu(@) | (@) = 7 (@) | (V2™ | xui(2))

= 3xu(x) [ 27| xm(z)) (18)

The final result for the leading nonadiabatic correction is thus

_ b

AByY =261 (vt |27 | xaut) (19)
with
5 — ; (p1s(r) [ rcos | sOK(r)géfK(r) | 7 cos 6 | ois(r))
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Values of the asymptotic expansion coefficients. The quan-
tities (;, and ~;, and ¢; are respectively first, second and
third nonadiabatic corections to the multipole polarizabili-
ties oy of order [. Also, ( is the nonadiabatic correction to
n, and 6 is the nonadiabatic correction to €. The multipole
contributions to each term are listed under I, I/, .. ..

Coeffi- Coeffi-

cient ~Value [ " cient  Value v
Q 234 11 01 11956272310 1

a2 ; 2.2 m ;1;; 1 2
a3 i;?; 33 G 288Z41901 1 2
o) 181520155 11 K 1Z6?00 2 3
I3} 84Z36 11 A 11956272310 2 2
P2 ;0276 2 2 ¢ ;;‘;22910 11 1
B3 ;’5256 33 0 56?21231223& 11 1
LB,
V2 1;22910 L1 o 912% 2 1 2

& Corrected by Xiao-Feng Wang and Zong-Chao Yan, Phys. Rev. A 95,
022505 (2017).



The complete asymptotic expansion for helium up to {(z71°) is

Bu = 2= sy b o ) b (e 4 o)
e o]
Sorass + 1+ 0] )
+ g — 336523 (21)

The last two terms are small second-order dipole-dipole and dipole-quadrupole
perturbation corrections. See also Xiao-Feng Wang and Zong-Chao Yan,
Phys. Rev. A 95, 022505 (2017).

For expectation values of (x™"), see G. W. F. Drake and R. A. Swainson,
Phys. Rev. A 42, 1123 (1990).

For a similar asymptotic expansion of matrix elements of the ¢ function, see
G. W. F. Drake, Phys. Rev. A 45, 70 (1992). This is very useful for QED
corrections.

The numerical values of all these terms for the example of the 1510 state are
as listed in

Asymptotic expansion for the energy of the 1s10k state of helium
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Quantity Value

—72/2 —2.000 000 000 000 000 00
—1/(2n?) —0.005 000 000 000 000 00
cy(r=4) —0.000 000 007 393 341 95
cg(r=%) 0.000 000 000 004 980 47
cr(r=7) 0.000 000 000 000 278 95
cg(r™°) —0.000 000 000 000 224 33
co(r™?) —0.000 000 000 000 002 25
c10(r~10) 0.000 000 000 000003 73
Second order —0.000 000 00000007091
Total —2.005 000007 388 376 30(74)

Variational —2.005000 007 388 375 8769(0)
Difference —0.000 000 000 000 000 42(74)
~ 3 Hz

For a similar application to the Rydberg states of lithium, see
R.J. Drachman and A.K. Bhatia, Phys. Rev. A 51, 2926 (1995).
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For the low-lying S-states and P-states of helium [?],

Inko(1'S) = 2.983865861, (22)
Inko(2'S) = 2.980118365, (23)
Inko(239) = 2.977742459, (24)
Inko(2'P) = 2.983803377, (25)
Inky(2°P) = 2.983690995. (26)

For a 1snl state with large [, the asymptotic expansion [G.W.F. Drake Phys.
Scr. T95, 22 (2001)].

Inko(Lsnl) ~ Inko(1 1<Z_1>41k(l)
n ko(lsn nos)—i—ﬁ? n ko(n
+0.316 205(6)Z % (r—*),;

+ ApB(1snl) (27)

becomes essentially exact. Here In ky(nl) is the one-electron Bethe logarithm
In ky = 2.984 128 555765497610 ... and

16(Z — 1)Y[3n* — (1 + 1)]

("t = (20— 1)20(20 + 1) (20 + 2)(20 + 3) (28)
The correction AB(1snl) for higher order terms is
AB(Lsnl 'L) = 95.8(8)(r %) — 845(19)(r~7)
+1406(50) (r %) (29)
AB(1snl 3L) = 95.1(9)(r %) — 841(23)(r~ ")
+ 1584(60) (r ) . (30)

For example, for the 1s4f 'F state, 8(4 'F) = 2.984 127 1493(3).
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1 Pseudospectral Theory

The basic idea of pseudospectral methods is to span the actual spectrum of
states (i.e. an infinity of bound states plus the continuum) with a basis set of
variationally determined pseudostates that is entirely discrete, as illustrated
in Fig. 1 (below). In the one-electron case, the discrete variational representa-
tion is entirely equivalent to a Sturmian basis set(see Ince” Differential Equa-
tions). From a computational point of view, the pseudospectrum is obtained
by diagonalizing H| in a discrete variational basis set of nonorthogonal func-
tions xp, p = 0, ..., N —1 such that the linear combinations ¢, = Zé\fgol apqXq
satisfy the generalized eigenvalue problem

<¢p’¢q> - 5p7q (31)
(dp| Holdyg) Ep Op.q (32)

13



A
E/ /A// g
Es
A2
Es
A1
| | 1 ] |
Er—y 2 3 4 5
N

Diagram illustrating the Hylleraas-Undheim-MacDonald Theorem. The
Ap, p = 1,..., N are the variational eigenvalues for an N-dimensional
basis set, and the E; are the exact eigenvalues of H. The highest A, lie
in the continuous spectrum of H.

Hylleraas-Undheim-MacDonald Theorem

e According to the matrix interleaving theorem, each time a new basis func-
tion is added, the old eigenvalues interleave he new. Thus all the eigenval-
ues must move inexorably downward.

e It follows that all the eigenvalues are upper bounds to the exact energies,
provided only that the correct number of eigenvalues lies lower.
No further orthogonalization is required.
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Demonstration: Pseudostates for Hydrogen Polarizability

Consider as an example the static dipole polarizability aqg of a hydrogen atom

defined by

1

where £ is the external electric field strength. Then

1$\z|np (np | z | ns)
Ozd—2¥
— E(1s)

where ) denotes a sum over bound states and an integration over the con-

tinuum. Alternatively, from perturbation theory,
ag =2(1s | z | 1s)V)
where | 15)() denotes the solution to the first-order perturbation equation
(Hy — Ep) | 1s)M + 2| 15)D =0

The exact solution to the first-order perturbation equation is

1
r|1s)M =0W = ———_(2r +r?) e " Y (8). (33)

V3

Construct a variational solution

1
ol = —\/g(blr Fbyr?) e M YO(R) (34)

where b; and by are linear variational parameters, and \ is an additional non-
linear variational parameter.

This provides a two-dimensional basis set of functions

re M Y() and r?e " YL(R),

with the exact solution being recovered for the case A = 1.

For X\ # 1, the basis set provides the best variational representation of ¥

15



After solving for the pseudostates and summing, the expression for a4 as a
function of A\ becomes

. 2 12
W) = 68 ()

y ONt — 1203 + 14X\2 — 10A + 5
BAE— 103 + 18X 2 — 10A + 5

(35)
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Figure 1: Variational polarizability aq of hydrogen.

Main points:

e Since F is an upper bound, a4 is a lower bound for any .

e The exact value of 4.5a3 is recovered at A = 1 (not A = 1/2 for the 2p
state).

e The entire spectrum of hydrogen is being well represented by just two
pseudostates, neither of which corresponds to physical states of hydrogen.

e In the sum over the physical spectrum, only about half of the polarizability
comes from the bound states. The rest comes from the integration over
the continuum.
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