
Special Topics on Precision Measurement
in Atomic Physics: Lecture 9

Applications to states of high angular momentum

Instructor: Gordon W.F. Drake, University of Windsor
Sponsored by USTC, Organized by WIPM

October 9 to November 13, 2019

We have already seen that a simple structure emerges for states of high
angular momentum.

Variational energies for the n = 10 singlet and triplet states of helium.

State Singlet Triplet

10 S –2.005 142 991 747 919(79) –2.005 310 794 915 611 3(11)
10 P –2.004 987 983 802 217 9(26) –2.005 068 805 497 706 7(30)
10 D –2.005 002 071 654 256 81(75) –2.005 002 818 080 228 84(53)
10 F –2.005 000 417 564 668 80(11) –2.005 000 421 686 604 88(26)
10 G –2.005 000 112 764 318 746(22) –2.005 000 112 777 003 317(21)
10 H –2.005 000 039 214 394 532(17) –2.005 000 039 214 417 416(17)
10 I –2.005 000 016 086 516 1947(3) –2.005 000 016 086 516 2194(3)
10 K –2.005 000 007 388 375 8769(0) –2.005 000 007 388 375 8769(0)

−2.005 000 · · · is the screened hydrogenic eigenvalue ESH = −2 − 1/(2n2)
with n = 10. Note that for the K-states, the difference between the singlet
and triplet energy is no longer visible. The correction to ESH is then fully
accounted for by a core-polarization model.
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ASYMPTOTIC EXPANSIONS

Core Polarization Model (A. Dalgarno, R. Drachman)

• neglect exchange.

• Rydberg electron moves in the field generated by the polarizable core.
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x
Z
e−

Polarizable core

e−

Rydberg electron

Illustration of the physical basis for the asymptotic expansion method in
which the Rydberg electron moves in the field generated by the polarized
core.

V (x) = − Z − 1

x
+∆V (x)

∆V (x) = − c4
x4

− c6
x6

− c7
x7

− c8
x8

− c9
x9

− c10
x10

+ · · ·

For example, c4 =
1
2α1

c6 =
1
2 (α2 − 6β1)

α1 =
9

2Z4
is the dipole polarizability,

α2 =
15

Z6
is the quadrupole polarizability,

β1 =
43

8Z6
is a nonadiabatic correction.
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From https://dlmf.nist.gov/10.17 

Asymptotic expansions of Bessel functions 
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Then

∆EnL = − (Z − 1)2

2n2
+ ⟨χ0 | ∆V (x) | χ0⟩+ ⟨χ0 | ∆V (x) | χ1⟩

where | χ0⟩ = unperturbed wave function for the Rydberg electron, and
| χ1⟩ = first-order perturbation correction to | χ0⟩ due to ∆V (x); i.e.

[h0(x)− e0] | χ1⟩+∆V (x) | χ0⟩ =| χ0⟩⟨χ0 | ∆V (x) | χ0⟩

All calculations can be done analytically, using methods of Dalgarno and
Stewart (1956-60) and Cohen and Dalgarno (1961-66), especially the “Dal-
garno Interchange Theorem.”

See G.W.F. Drake, Adv. At. Mol. Opt. Phys. 31, 1 (1993).
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MATHEMATICAL FORMULATION

(See G.W.F. Drake, Adv. At. Mol. Opt. Phys. 31, 1(1993). Treat the inner
and outer electrons as distinguishable particles and ignore exchange. We can
then write the Hamiltonian in the form

H = −1

2
∇2

r −
Z

r︸ ︷︷ ︸
h0(r, Z)

−1

2
∇2

x −
Z − 1

x︸ ︷︷ ︸
h0(x, Z − 1)

+

 1

|r− x|
− 1

x


︸ ︷︷ ︸

∆V (r,x)

(1)

Assume that x >> r and expand

∆V (r,x) =
1

|r− x|
− 1

x
=

∞∑
l=1

rl

xl+1
Pl(r̂ · x̂) (2)

Note that the l = 0 term cancels. Consider first the l = 1 term as a small
perturbation. Then ∆V = r cos θ/x2.The unperturbed problem is

[h0(r, Z) + h0(x, Z − 1)− ESH]Ψ(r, x) = 0 (3)

where Ψ(r, x) has the separable product form

Ψ(r, x) = φ1s(r)χnl(x) (4)

The first-order energy vanishes, and second-order energy is

∆E2 =∑
K,k

⟨φ1s(r)χnl(x) | r cos θ
x2 | φK(r)χk(x)⟩⟨φK(r)χk(x) | r cos θ

x2 | ⟨φ1s(r)χnl(x)⟩
DK + dk

(5)

where

DK = E1s − EK

dk = enl − ek

Now expand the denominator is a power series

1

DK + dk
=

1

DK

1− dk
DK

+

(
dk
DK

)2
+ · · ·

 (6)
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The leading term gives

∆E2 =∑
K,k

⟨φ1s(r)χnl(x) | r cos θ
x2 | φK(r)χk(x)⟩⟨φK(r)χk(x) | r cos θ

x2 | ⟨φ1s(r)χnl(x)⟩
DK

(7)

Since the integrals over r and x are independent, and dk no longer appears
in the denominator, we can complete the sum over k by closure∑

k

| χk⟩⟨χk |= 1

and regroup the terms in the form

∆E2 = ⟨χnl |
1

x4
| χnl⟩

∑
K

⟨φ1s | r cos θ | φK⟩⟨φK | r cos θ | φ1s⟩
DK

= −α1

2
⟨χnl |

1

x4
| χnl⟩ (8)

where

α1 = −2
∑
K

⟨φ1s | r cos θ | φK⟩⟨φK | r cos θ | φ1s⟩
DK

(9)

is the dipole polarizability.

Perturbation Calculation of α1

α1 can be calculated exactly by solving the perturbation equation for hydro-
genlike He+ (see problem)

(h0 − E0)φ
(1) + r cos θφ

(0)
1s = 0 (10)

Then

α1 = 2⟨φ(1) | r cos θ | φ(0)
1s ⟩

=
9

2Z4
(11)

Also, for the expectation value of 1/x4

⟨x−4⟩ = 16[3n2 − l(l + 1)]

n5(2l + 3)(2l + 2)(2l + 1)(2l)(2l − 1)
(12)
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The total is thus

∆E2 = −1

2

(
9

32

)
16(300− 7 · 8)

17 · 16 · 15 · 14 · 13
(13)

This gives ∆E2 = − 183
24 752 000 000 = −0.000 000 007 393 341 95 · · ·.

Higher values of l in ∆V give quadrupole, octupole, . . . corrections. This is
called the adiabatic approximation.

Asymptotic expansion for the energy of the 1s10k state of helium

Quantity Value

−Z2/2 –2.000 000 000 000 000 00

−1/(2n2) –0.005 000 000 000 000 00

c4⟨r−4⟩ –0.000 000 007 393 341 95

Total –2.005 000 007 393 341 95

Variational –2.005 000 007 388 375 8769(0)

Difference –0.000 000 000 004 966 08

≃ 33 kHz

Nonadiabatic Corrections

The next term in the expansion

1

DK + dk
=

1

DK

1− dk
DK

+

(
dk
DK

)2
+ · · ·

 (14)

i.e. − dk
DK

gives the leading nonadiabatic correction. The contribution to the
second-order energy is

∆E
(1)
2 =

∑
K,k

dk⟨φ1s(r)χnl(x) | r cos θ
x2 | φK(r)χk(x)⟩⟨φK(r)χk(x) | r cos θ

x2 | ⟨φ1s(r)χnl(x)⟩
D2

K

(15)
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The trick now is to replace dk = enl− ek by the operator enl−h(x) inside the
matrix element so that the numerator Nk,K summed over k becomes

∑
k

Nk,K =
∑
k

⟨φ1s(r)χnl(x) |
r cos θ

x2
| [enl − h(x)]φK(r)χk(x)⟩

× ⟨φK(r)χk(x) |
r cos θ

x2
| ⟨φ1s(r)χnl(x)⟩ (16)

Once again the sum over k can be completed by closure, and the matrix
elements factored into independent parts to obtain

∑
k

Nk,K = ⟨φ1s(r) | r cos θ | φK(r)⟩⟨φK(r) | r cos θ | φ1s(r)⟩

× ⟨χnl(x) |
1

x2
[enl − h(x)]

1

x2
| χnl(x)⟩ (17)

Next commute the operator enl − h(x) through to the right and use

[enl − h(x)] | χnl⟩ = 0

to obtain the remaining part ⟨χnl(x) | x−2(∇x−2)·∇ | χnl(x)⟩. An integration
by parts then yields the final result for the matrix element

⟨χnl(x) | x−2(∇x−2) · ∇ | χnl(x) | χnl(x)⟩ =
1

4
⟨χnl(x) | (∇2x−4) | χnl(x)⟩

= 3⟨χnl(x) | x−6 | χnl(x)⟩ (18)

The final result for the leading nonadiabatic correction is thus

∆E
(1)
2 =

β1
3
β1⟨χnl | x−6 | χnl⟩ (19)

with

β1 =
∑
K

⟨φ1s(r) | r cos θ | φK(r)⟩⟨φK(r) | r cos θ | φ1s(r)⟩
D2

K

=
43

8Z6
(20)
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Values of the asymptotic expansion coefficients. The quan-
tities βl, and γl, and δl are respectively first, second and
third nonadiabatic corections to the multipole polarizabili-
ties αl of order l. Also, ζ is the nonadiabatic correction to
η, and θ is the nonadiabatic correction to ε. The multipole
contributions to each term are listed under l, l′, . . ..

Coeffi- Coeffi-
cient Value l l′ cient Value l l′ l′′ l′′′

α1
9

2Z4
1 1 δ1

9673

1152Z10
1 1

α2
15

Z6
2 2 η1

213

2Z8
1 1 2

α3
525

4Z8
3 3 ζ1

28 491

8Z10
1 1 2

α4
8505

4Z10
1 1 κ

1620

Z10
1 2 3

β1
43

8Z6
1 1 λ

9673

1152Z10
2 2 2

β2
107

8Z6
2 2 ε

4329

322Z10
1 1 1 1

β3
3265

32Z6
3 3 θ

534 323

64Z12

a

1 1 1 1

γ1
319

48Z8
1 1 ρ

4905

2Z12
1 1 1 3

γ2
2399

192Z10
1 1 σ

98 511

16Z12
1 2 1 2

a Corrected by Xiao-Feng Wang and Zong-Chao Yan, Phys. Rev. A 95,
022505 (2017).
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The complete asymptotic expansion for helium up to ⟨x−10⟩ is

EnL = −2− 1

2n2
+

1

2

{
− 9

32
⟨x−4⟩+ 69

256
⟨x−6⟩+ 3833

7680
⟨x−7⟩

−
[
55 923

32 768
+

957

5120
L(L+ 1)

]
⟨x−8⟩ − 908 185

344064
⟨x−9⟩

+

[
4 102 258

524 288
+

33 275

14 336
L(L+ 1)

]
⟨x−10⟩

}

+ e1,12,0 −
23

20
e1,22,0 (21)

The last two terms are small second-order dipole-dipole and dipole-quadrupole
perturbation corrections. See also Xiao-Feng Wang and Zong-Chao Yan,
Phys. Rev. A 95, 022505 (2017).

For expectation values of ⟨x−n⟩, see G. W. F. Drake and R. A. Swainson,
Phys. Rev. A 42, 1123 (1990).

For a similar asymptotic expansion of matrix elements of the δ function, see
G. W. F. Drake, Phys. Rev. A 45, 70 (1992). This is very useful for QED
corrections.

The numerical values of all these terms for the example of the 1s10 state are
as listed in

Asymptotic expansion for the energy of the 1s10k state of helium
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Quantity Value

−Z2/2 –2.000 000 000 000 000 00

−1/(2n2) –0.005 000 000 000 000 00

c4⟨r−4⟩ –0.000 000 007 393 341 95

c6⟨r−6⟩ 0.000 000 000 004 980 47

c7⟨r−7⟩ 0.000 000 000 000 278 95

c8⟨r−8⟩ –0.000 000 000 000 224 33

c9⟨r−9⟩ –0.000 000 000 000 002 25

c10⟨r−10⟩ 0.000 000 000 000 003 73

Second order –0.000 000 000 000 070 91

Total –2.005 000 007 388 376 30(74)

Variational –2.005 000 007 388 375 8769(0)

Difference –0.000 000 000 000 000 42(74)

≃ 3 Hz

For a similar application to the Rydberg states of lithium, see
R.J. Drachman and A.K. Bhatia, Phys. Rev. A 51, 2926 (1995).
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For the low-lying S-states and P -states of helium [?],

ln k0(1
1S) = 2.983 865 861 , (22)

ln k0(2
1S) = 2.980 118 365 , (23)

ln k0(2
3S) = 2.977 742 459 , (24)

ln k0(2
1P ) = 2.983 803 377 , (25)

ln k0(2
3P ) = 2.983 690 995 . (26)

For a 1snl state with large l, the asymptotic expansion [G.W.F. Drake,Phys.
Scr. T95, 22 (2001)].

ln k0(1snl) ∼ ln k0(1s) +
1

n3

(
Z − 1

Z

)4
ln k0(nl)

+ 0.316 205(6)Z−6⟨r−4⟩nl
+∆β(1snl) (27)

becomes essentially exact. Here ln k0(nl) is the one-electron Bethe logarithm
ln k0 = 2.984 128 555 765 497 610 . . . and

⟨r−4⟩nl =
16(Z − 1)4[3n2 − l(l + 1)]

(2l − 1)2l(2l + 1)(2l + 2)(2l + 3)
. (28)

The correction ∆β(1snl) for higher order terms is

∆β(1snl 1L) = 95.8(8)⟨r−6⟩ − 845(19)⟨r−7⟩
+1406(50)⟨r−8⟩ (29)

∆β(1snl 3L) = 95.1(9)⟨r−6⟩ − 841(23)⟨r−7⟩
+1584(60)⟨r−8⟩ . (30)

For example, for the 1s4f 1F state, β(4 1F) = 2.984 127 1493(3).
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1 Pseudospectral Theory

The basic idea of pseudospectral methods is to span the actual spectrum of
states (i.e. an infinity of bound states plus the continuum) with a basis set of
variationally determined pseudostates that is entirely discrete, as illustrated
in Fig. 1 (below). In the one-electron case, the discrete variational representa-
tion is entirely equivalent to a Sturmian basis set(see Ince”Differential Equa-
tions). From a computational point of view, the pseudospectrum is obtained
by diagonalizing H0 in a discrete variational basis set of nonorthogonal func-
tions χp, p = 0, . . . , N−1 such that the linear combinations ϕp =

∑N−1
q=0 ap,qχq

satisfy the generalized eigenvalue problem

⟨ϕp|ϕq⟩ = δp,q (31)

⟨ϕp|H0|ϕq⟩ = εp δp,q (32)

13



E1

E2

E3

E4

E5
E∞

1 2 3 4 5
N

λ1 HH PP hh hh

λ2 QQ
HH hh

λ3
@@

QQ

λ4

J
J

λ5���
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�

���
�

�
�

�
��

�
�
�
�

�
�

�
�

Diagram illustrating the Hylleraas-Undheim-MacDonald Theorem. The
λp, p = 1, . . . , N are the variational eigenvalues for an N -dimensional
basis set, and the Ei are the exact eigenvalues of H. The highest λp lie
in the continuous spectrum of H.

Hylleraas-Undheim-MacDonald Theorem

• According to the matrix interleaving theorem, each time a new basis func-
tion is added, the old eigenvalues interleave he new. Thus all the eigenval-
ues must move inexorably downward.

• It follows that all the eigenvalues are upper bounds to the exact energies,
provided only that the correct number of eigenvalues lies lower.
No further orthogonalization is required.
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Demonstration: Pseudostates for Hydrogen Polarizability

Consider as an example the static dipole polarizability αd of a hydrogen atom
defined by

∆E = −1

2
αdE2

where E is the external electric field strength. Then

αd = 2
∑
n

∫ ⟨1s | z | np⟩ ⟨np | z | ns⟩
E(2p)− E(1s)

where
∑
n

∫
denotes a sum over bound states and an integration over the con-

tinuum. Alternatively, from perturbation theory,

αd = 2⟨1s | z | 1s⟩(1)

where | 1s⟩(1) denotes the solution to the first-order perturbation equation

(H0 − E0) | 1s⟩(1) + z | 1s⟩(0) = 0

The exact solution to the first-order perturbation equation is

⟨r | 1s⟩(1) ≡ Ψ(1) = − 1√
3
(2r + r2) e−r Y 0

1 (r̂) . (33)

Construct a variational solution

Ψ
(1)
tr = − 1√

3
(b1r + b2r

2) e−λr Y 0
1 (r̂) , (34)

where b1 and b2 are linear variational parameters, and λ is an additional non-
linear variational parameter.

This provides a two-dimensional basis set of functions

r e−λr Y 0
1 (r̂) and r2 e−λr Y 0

1 (r̂) ,

with the exact solution being recovered for the case λ = 1.

For λ ̸= 1, the basis set provides the best variational representation of Ψ(1).
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After solving for the pseudostates and summing, the expression for αd as a
function of λ becomes

αd(λ) = 6λ5
(

2

λ+ 1

)12

× 9λ4 − 12λ3 + 14λ2 − 10λ+ 5

5λ4 − 10λ3 + 18λ2 − 10λ+ 5
.

(35)
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Figure 1: Variational polarizability αd of hydrogen.

Main points:

• Since E is an upper bound, αd is a lower bound for any λ.

• The exact value of 4.5 a30 is recovered at λ = 1 (not λ = 1/2 for the 2p
state).

• The entire spectrum of hydrogen is being well represented by just two
pseudostates, neither of which corresponds to physical states of hydrogen.

• In the sum over the physical spectrum, only about half of the polarizability
comes from the bound states. The rest comes from the integration over
the continuum.

17



2 term 

3 term 

4 term 
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