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METHODS OF THEORETICAL ATOMIC PHYSICS

For systems more complicate than hydrogen, exact analytic solutions are not
possible, and so approximation methods must be used.

Methods of Theoretical Atomic Physics.

Method Typical Accuracy for the Energy

Many Body Perturbation Theory ≥ 10−6 a.u.

Configuration Interaction 10−6 – 10−8 a.u.

Explicitly Correlated Gaussiansa ∼ 10−10 a.u.

Hylleraas Coordinates (He)b,c,d ≤ 10−35 – 10−40 a.u.

Hylleraas Coordinates (Li)e,f ∼ 10−15 a.u.

aS. Bubin and Adamowicz J. Chem. Phys. 136, 134305 (2012).
bC. Schwartz, Int. J. Mod. Phys. E–Nucl. Phys. 15, 877 (2006).
cH. Nakashima, H. Nakatsuji, J. Chem. Phys. 127, 224104 (2007).
dD.T. Aznabaev et al., Phys. Rev. A 98, 012510 (2018).
e M. Puchalski et al. Phys. Rev. A 87 030502 (2017).
f L.M.Wang et al., Phys. Rev. A 95, R032504 (2017).

Z-SCALED ATOMIC UNITS

The starting point is the two-electron Schrödinger equation for infinite nuclear
mass − h̄2
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where m is the electron mass, and r12 = |r1 − r2| (see diagram below).

Begin by rescaling distances and energies so that the Schrödinger equation can
be expressed in a dimensionless form. The dimensionless Z-scaled distance
is defined by

ρ =
Zr

a0

where

a0 =
h̄2

me2

is the atomic unit (a.u.) of distance equal to the Bohr radius
0.529 177 210 903(80)× 10−10 m. Then
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But

h̄2

m

me2
h̄2

2

=
e2

a0

is the hartree atomic unit of of energy (Eh = 27.211386 245 988(53) eV, or
equivalently Eh/(hc) = 219 474.631 363 20(43) cm−1). Therefore, after multi-
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plying through by a0/(Ze)
2, the problem to be solved in Z-scaled dimension-

less units becomes

[−1
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+∇2

ρ2
)− 1

ρ1
− 1

ρ2
+
Z−1

ρ12
]ψ = εψ

where

ε =
Ea0
(Ze)2

is the energy in Z-scaled atomic units. For convenience, rewrite this in the
conventional form

Hψ = εψ

where (using r in place of ρ for the Z-scaled distance)

H = −1

2
(∇2

1 +∇2
2)−

1

r1
− 1

r2
+
Z−1

r12

is the atomic Hamiltonian for infinite nuclear mass.

THE HARTREE-FOCK METHOD

For purposes of comparison, and to define the correlation energy, assume that
ψ(r1, r2) can be written in the separable product form

ψ(r1, r2) =
1√
2
[u1(r1)u2(r2)± u2(r1)u1(r2)]

for the 1s2 1S ground state. Because of the 1
r12

term in the Schrödinger
equation, the exact solution cannot be expressed in this form as a separable
product. However, the Hartree-Fock (or Dirac-Fock) approximation corre-
sponds to finding the best possible solution to the Schrödinger (or Dirac)
equation

Hψ(r1, r2) = Eψ(r1, r2)

that can nevertheless be expressed in this separable product form, where as
before

H = −1

2
(∇2

1 +∇2
2)−

1

r1
− 1

r2
+
Z−1

r12
is the full two-electron Hamiltonian. To find the best solution, substitute into
⟨ψ | H − E | ψ⟩ and require this expression to be stationary with respect to
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arbitrary infinitesimal variations δu1 and δu2 in u1 and u2 respectively; i.e.

1

2
⟨δu1(r1)u2(r2)± u2(r1)δu1(r2) | H − E | u1(r1)u2(r2)± u2(r1)u1(r2)⟩

=
∫
δu1(r1) dr1

{∫
dr2 u2(r2) (H − E) [u1(r1)u2(r2)± u2(r1)u1(r2)]

}
= 0

for arbitrary δu1(r1). Therefore {∫ dr2 . . .} = 0.

Similarly, the coefficient of δu2 would give∫
dr1 u1(r1) (H − E) [u1(r1)u2(r2)± u2(r1)u1(r2)] = 0

Define
I12 = I21 =

∫
dru1(r)u2(r),

Hij =
∫
drui(r)(−

1

2
∇− 1

r
)uj(r),

Gij(r) =
∫
dr′ ui(r

′)
1

|r− r′|
uj(r

′)

Then the above equations become the pair of integro-differential equations

[H0 − E +H22 +G22(r)]u1(r) = ∓[I12(H0 − E) +H12 +G12(r)]u2(r)

[H0 − E +H11 +G11(r)]u2(r) = ∓[I12(H0 − E) +H12 +G12(r)]u1(r)

These must be solved self-consistently for the “constants” I12 and Hij and
the function Gij(r).

The Hartree Fock energy is E ≃ −2.87 . . . a.u. while the exact energy is
E = −2.903 724 . . . a.u. The difference is called the “correlation energy” be-
cause it arises from the way in which the motion of one electron is correlated
to the other. The Hartree-Fock equations only describe how one electron
moves in the average field provided by the other (mean-field theory).
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CONFIGURATION INTERACTION

Expand

ψ(r1, r2) = C0u
(s)
1 (r1)u

(s)
1 (r2) + C1u

(P )
1 (r1)u

(P )
1 (r2)Y0

1,1,0(r̂1, r̂2)

+ C2u
(d)
1 (r1)u

(d)
2 (r2)Y0

2,2,0(r̂1, r̂2) + ...± exchange

where
YM
l1,l2,L

(r̂1, r̂2) =
∑

m1,m2

Y m1
l1

(r1)Y
m2
l2

(r2)⟨l1l2m1m2 | LM⟩

This works, but is slowly convergent, and very laborious. The best CI calcu-
lations are accurate to ∼ 10−7 a.u.

PERTURBATION THEORY

In the standard way, write

H = H0 + λV1

where λ is a perturbation parameter and, for example, V1 = Vexact − VHF.
Expand

Ψ = Ψ0 + λΨ1 + · · ·
E = E0 + λE1 + · · ·

Substitute into HΨ = EΨ and collect equal powers of λ to obtain

λ0 : (H0 − E0)Ψ0 = 0

λ1 : (H0 − E0)Ψ1 + V1Ψ0 = E1Ψ0

λ2 : (H0 − E0)Ψ2 + V1Ψ1 = E1Ψ1 + E2Ψ0

The energy expansion coefficients up to second-order are then

E1 = ⟨Ψ0 | V1 | Ψ0⟩ (1)

and

E2 =
∞∑
n ̸=0

⟨Ψ0 | V1 | Ψn⟩⟨Ψn | V1 | Ψ0⟩
E0 − En

(2)
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including an integration over the continuum. For a many-electron atom,
express in terms of Slater determinants, or second quantization formalism.
Accuracy is limited to a few parts in 106. Later on in the course, we will
use the method of Dalgarno and Lewis and/or pseudostates to perform the
infinite summations.

HYLLERAAS COORDINATES

[E.A. Hylleraas, Z. Phys. 48, 469 (1928) and 54, 347 (1929) suggested using
the co-ordinates r1, r2 and r12 =| r1 − r2 |, or equivalently

s = r1 + r2,

t = r1 − r2,

u = r12

and writing the trial functions in the form

Ψ(r1, r2) =
i+j+k≤N∑

i,j,k

ci,j,kr
i+l1
1 rj+l2

2 rk12e
−αr1−βr2YM

l1,l2,L
(r̂1, r̂2)± exchange

where
YM
l1,l2,L

(r̂1, r̂2) =
∑

m1,m2

Y m1
l1

(r̂1)Y
m2
l2

(r̂2) ⟨l1l2m1m2 | LM⟩

is a vector-coupled product of spherical harmonics to form a state of to-
tal angular momentum L and z-component M . Diagonalizing H in this
nonorthogonal basis set is equivalent to solving

∂E

∂ci,j,k
= 0

for fixed α and β.

The diagonalization must be repeated for different values of α and β in order
to optimize the nonlinear parameters.

COMPLETENESS

The completeness of the above basis set can be shown by first writing

r212 = r21 + r22 − 2r1r2 cos θ12
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and, from the spherical harmonic addition theorem,

cos(θ12) =
4π

3

1∑
m=−1

Y m∗
1 (θ1, φ1)Y

m
1 (θ2, φ2)

Consider first the S-states. The r012 terms are like the ss′ terms in a CI
calculation. The r212 terms bring in pp type contributions, and the higher
powers bring in dd, ff etc. type terms. In general

Pl(cos θ12) =
4π

2l + 1

l∑
m=−l

Y m
l

∗(θ1, φ1)Y
m
l (θ2, φ2)

For P -states, one would have similarly

r012 → (sp)P
r212 → (pd)P
r412 → (df)P
...

...

For D-states
r012 → (sd)D (pp′)D
r212 → (pf)D (dd′)D
r412 → (dg)D (ff ′)D
...

...
...

In this case, since there are two “lowest-order” couplings to form a D-state,
both must be present in the basis set, i.e.

Ψ(r2, r2) =
∑
cijkr

i
1r

j+2
2 rk12e

−αr1−βr2YM
022(r̂1, r̂2)

+
∑
dijkr

i+1
1 rj+1

2 rk12 e
−α′r1−β′r2YM

112(r̂1, r̂2)

For F-states, one would need (sf)F and (pd)F terms.

For G-states, one would need (sg)G, (pf)G and (dd′)G terms.

Completeness of the radial functions can be proven by considering the Sturm-
Liouville problem (

−1

2
∇2 − λ

rs
− E

)
ψ(r) = 0
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or −1

2

1

r2
∂

∂r

(
r2
∂

∂r

)
− l (l + 1)

2r2
− λ

r
− E

u(r) = 0.

For fixed E and variable λ (nuclear charge).

The eigenvalues are λn = (E/En)
1/2, where En = − 1

2n2 .

and the eigenfunctions are

unl(r) =
1

(2l + 1)!

 (n+ l)!

(n− l − 1)2!

1/2

(2α)3/2e−αr

× (2αr)l 1F1 (−n+ l + 1, 2l + 2; 2αr)

with α = (−2E)1/2 and n ≥ l + 1. The confluent hypergeometric function

1F1(a, b, ; z) then denotes a finite polynomial since a = −n+l+1 is a negative
integer or zero.

Unlike the hydrogen spectrum, which has both a discrete part for E < 0
and a continuous part for E > 0, this forms an entirely discrete set of finite
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polynomials, called Sturmian functions. They are orthogonal with respect to
the potential, i.e. ∫ ∞

0
r2dr

(
un′l(r)

1

r
unl(r)

)
= δn,n′

Since they become complete in the limit n → ∞, this assures the complete-
ness of the variational basis set.

[See also B Klahn and W.A. Bingel Theo. Chim. Acta (Berlin) 44, 9 and 27
(1977)].

SPECIAL ROLE OF ODD POWERS OF r12

The above shows that the Hylleraas basis set is complete with just the even
powers of r12, and at this level it is equivalent to CI. But it is the odd powers
that greatly accelerate the rate of convergence because they reproduce the
electron-electron cusp at r12 = 0.

Energies for the ground state of helium
obtained with various powers of r12 in the basis set.

r12 terms a Energy (a.u.) Error (eV)

no r12 –2.879 024 0.672
r212 –2.900 503 0.087 6
r212, r

4
12 –2.902 752 0.026 4

r12 –2.903 496 0.006 20
r12, r

3
12 –2.903 700 0.000 65

all r12 –2.903 724 0.000 00
a Includes all powers of r1 and r2.

HOMEWORK

Consider the matrix eigenvalue problem described by the 2× 2 matrix

H =

(
E0 λV
λV E1

)

where E0 and E1 are the unperturbed eigenvalues, and λV is a perturbation.
Find the exact lowest eigenvalue E(λ) as a function of the perturbation pa-
rameter λ and show that a power series expansion of E(λ) agrees with the
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results of the perturbation equations (1) and (2) up to terms of order λ2. In
this case, the spectrum has only two states and so the summation in Eq. (2)
has only one term corresponding to n = 1. The lesson to be learned is that
summing the perturbation series is equivalent to exact matrix diagonaliza-
tion.
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