Special Topics on Precision Measurement
in Atomic Physics: Lecture 4

Hylleraas Coordinates

Instructor: Gordon W.F. Drake, University of Windsor
Sponsored by USTC, Organized by WIPM
October 9 to November 13, 2019

Matrix Elements of H

H:_;vg_;vg—;—bfs (1)
Taking rq, 79 and 712 as independent variables,
ol ) R e
_ ll(llrgl) + 2(ry — 79 cOS 912)7;87“18;7‘12
oV w)

where VY acts only on the spherical harmonic part of the wave function and
the diagram



12

ra

defines the complete set of 6 independent variables is 71, 79, 12, 61, @1, x- If
r12 were not an independent variable, then one could take the volume element

to be
dr = 1% dry sin 0y df; dp173 dry sin 0y dby dys. (2)

However, 6y and ¢ are no longer independent variables. To eliminate them,
take the point ry as the origin of a new polar co-ordinate system, and write

dr = —r¥drysin 6, dfy de; r2y drissine dy dy (3)

and use
r% = 7“% + 7“%2 + 2117192 COS Y (4)

Then for fixed r1 and rq9,
2rodry = —2r1112 8in 1) dip (5)
Thus
dT = 7“1d7“1 T2d7”2 T12d7“12 sin (91 d@l dg@l dX (6)

The basic type of integral to be calculated is
I (ly,my,la,mg; R) = /Sil’l (01) dOvdprdX Y™ (61, 1) Y1) (02, ¢2)

X /Tldrl ngT’g 7”12d7“12 R (7”1, Ta, 7’12>
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Consider first the angular integral. Y;)* (6, ¢2) can be expressed in terms of
the independent variables 61, 1, x by use of the rotation matrix relation

L (02, p2) = ;D%),m(%? 01, x) Y, (012, ) (7)

where 615, © are the polar angles of ry relative to r1. The angular integral is
then

27 2m T my %
]ang = /0 dX/O d§01/0 S (61) db, Iy (917901)
XD Dgfg)m (1,01, x) Y (612, 0)

Use
201 + 1

Y (B101)" =\ =Dl (1.61.%) (8)

together with the orthogonality property of the rotation matrices (Brink and
Satchler, p 147)

/D,S{};,ng?M, sin 61 df; dp dy

872
mde 5mM 5m’M’

21, +1 8n?
[an — J 5m m YO 0 )
g dr 20 + 1 l1,12%m1,mo lg( 12 90)

— 277—511,125m1,m2P12 (COS 912)

to obtain

since

201+ 1
ng (912, 90) = A

Note that P, (cosf2) is just a short hand expression for a radial function
because

P, (cos t2) 9)

r? 413 — 17, (10)

cos 19 = T
172

The original integral is thus
00 0 ri+r
I(ll,ml,lg,MQ;R) = 277—511,125m1,m2/0 ™ d?”l/o () dTQ/ ' 2| 12 d?“lg

|7‘1—7"2

X R(r,r9,712) P, (cos 012)
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where again
2, .2 _ 2
LT T

(11)

cos By = o
172

is a purely radial function.

The above would become quite complicated for large Iy because P, (cos 6012)
contains terms up to (cosf2)?. However, recursion relations exist which

allow any integral containing P, (cosf2) in terms of those containing just
Py (cosbhz) =1 and P (cosby2) = cos bqo.

RADIAL INTEGRALS AND RECURSION RELATIONS

The basic radial integral is [see G.W.F. Drake, Phys. Rev. A 18, 820 (1978)]

Lo(a,be) = [Trdr [~ radrs [ rig drig 18 L rS, emon—or
ola,0,¢) = J mdry | Tadry [ - T120T2T 7T €

o0 o0 T2 a, b .c _—ari—pBrs
—1—/0 rodrsy /702 r1 dm/ T19 drig TiT9T 5 €

r1—r2

2 el e g q! p+)y BV
= (2@'+1){5q+1(a+5)“1]§) J! <a+ﬁ>

£ )]

where
p=a+2i+2 p=b+2i+2
g=b+c—2i+2 ¢Jd=a+c—2i+2

The above applies for a,b > —2,¢ > —1. [x] means ”greatest integer in” z.

Then
I (a,b,c) = /dTr rirhré,e =02 Py (cos 6)
1

= i[lo(a—l—l,b—1,c)+[0(a—1,b—|—1,c)—]0(a—1,b—1,c—|—2)]

The Radial Recursion Relation

Recall that the full integral is
I(llml, ZQmQ; R) = 27T511712 5m1,m2 112 (R) (12)
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where, for any function R = R(ry,r2,712)
I,(R) = [ dr, R(ry,2,m12) P, (cos 1) (13)

and [ d7, stands for the radial part of the integral

/dTr("'):/()OorldTl/OongdTg/rlJrTQTlgdrlg("')

|71 —"2|

To obtain the recursion relation, use

[Pl (x) — B4 ()]
P = 14
/() 20+ 1 (14)
with g
Pl(z) = %PZ—H(:U) (15)
Here x = cos 9 and
d o d?“lz d
dcosby  dcosBisdrys
_ _nre d
T12 dri

Then,

riro d [Pl—|—1 (COS 012) — Pl—l (COS 912)]
12 d?”lg 2l + 1

L(R)=- [dnR (16)

The 712 part of the integral can be integrated by parts to obtain

ri+r riry d
/ L T19 dTlQ Rgi [Pl—i—l - Pl—l]
|11 —7a| r19 drio
ri+7ro r1+T2 d 172 [PI‘H _ Pl_l]
= Rriry [Py — P — 12 dr ( R)
172 [ HH ! 1] |11 —72| |r1—72] 2 drio T'12 20+1

The integrated term vanishes because

P 2 _ .2 _ 2 _ P
cos 912 _ Tl + T2 T12 1 When 7"52 (Tl ‘|‘ T2)2 (17)
21179 =1 when r{,=(r1 —r9)
and P(1) =1, P(—1) = (=1).. Thus,
I (7”17“2 R,) = (21 + 1) L(R) — Iy (““R’) (18)
19 12
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It

R = 1§ b lpgy2emom—hr: (19)
then [G.W.F. Drake, Phys. Rev. A 18, 820 (1978)]
a C 2l + 1 a— — C a C
[1+1(T’17’ST12) = m[l (7’1 17’3 17’1;2) + 111 (7’17’12)7’12) (20)
For the special case ¢ = —2, take
R =r¢" 1) Hn prpgeomAr (21)

Then
I (7“‘117“37“1}2) = I (r‘f*lrg*l In 7“12) (204+1)— 1,4 (7“‘117“37“1}2) (22)
This allows all I; integrals to be calculated from tables of I, and I; integrals.

THE GENERAL INTEGRAL

The above results for the angular and radial integrals can now be combined
into a general formula for integrals of the type

I = //dr1 drs R1y%:;y (f1,f2)T;§k2K (1“171°2)32yz%2L (71,72) (23)

where
Vo (i) = 3 (hilomama| LM)Y™ (71) Y™ (72) (24)
my,ma
and
Tk (T1,12) = 3 (kikoqigo| KQ)YE (71) Y& () (25)
41,92

The basic idea is to make repeated use of the formula

/2
e 20 + 1) (2 + 1) (20 + 1)\
S CERCES [CE)
Im n
ol UN(ld 1Y e
(o) (66 0) 7600 @0

where
Y (r) = (=1)"Y; () (27)



and

Lol 1\ (—phE
(m1m2m)_(%+nm<memm " .
is a 3-7 symbol. In particular, write
V") Y (P) Y () = Sam(e L)Y ()
ZMM Yv/\li1 (fl)

Y (a) Vi (i) Y™ (72) = Sar () Y™ (i)
2 Napts Y)\lf (722)

The angular integral then gives a factor of 2wdp a/d0as a7 Pa (cos 012). The total
integral therefore reduces to the form

I = %: Crlp (R1Rs) (29)

where Cy = a5, Oy a,4. For further details and derivations, including
graphical representations, see G.W.F. Drake, Phys. Rev. A 18, 820 (1978).

Matrix Elements of H

Recall that | . | | 71
H=-Vi-2Vi—— ——4+— 30
2V1 2V2 (& T2 + 12 ( )

Consider matrix elements of

) ].8<28> 1e9<gw_}ﬁy+2wrww%m 5?2

Vi = -— |ri=— —— ("=
1
r2or \ 'or or r? r or{0r

r2 or
10

—2(V{ ‘rg) — 31
( 1 I'2) ror ( )
where r = 13 and cosf = cosf12. Also in what follows, define @}/ = 7”1V¥
where VY operates only on the spherical harmonic part of the wave function,
and similarly for l}/ :

A general matrix element is
a b . —a'ri—Broy M AoA 2| .a,.b.c —ari—Bray)M Ao
(rirgrise yz;lgL/ (71,72) ‘V1’ riral€ yzlzzL (71,72)) (32)
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Since V? is rotationally invariant, this vanishes unless L = L', M = M’. Also
V? is Hermitian, so that the result must be the same whether it operates to
the right or left, even though the results look very different. In fact, requiring
the results to be the same yields some interesting and useful integral identities

as follows:
Put
F =FY' 1 (F1,7) (33)
and
F = rirhrt e on—rr (34)
Then
1 +1 2 +1
ViF = {ﬁ[a(a-l—l)—h(h—i-l)]—l—c(CQ)—|—a2— afa+l)
1 r (8]
2 (ry — rocosf) 2 (ey .\ T2
+ s cla—ary] — 2 ( L 7“2) o F (35)
and

(F' |V F) = %j/dn F'Cy (1) Py (cos 6)

X {12[a(&+1)—l1(l1—|—1)]_2a<a+1) +C(C+1)

r{ 1 r
2 (ry — 0
+a? + (r TZCOS )c (@ — 047“1)} F (36)
™r

. —2cr

Y . 2
+ %:/dT,r F'C,y (Vl -r2> Py (cos0) ( o ) F (37)

where . . -

/dTT = /0 7”1d7“1/0 rodrs /m_T2 rdr (38)

For brevity, let the sum over A and the radial integrations be understood, and
let (V%) stand for the terms that appear in the integrand. Then operating
to the right gives
1 clc+1 2 (a + 1
(Vn = lata+ )b+ 1)+ OFY g 200D
1
2 (ry — rycosf)

2cry [y .
+ 2 cla—ar)— 2 (vl . r2> (39)

r1
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Operating to the left gives

1 / /+1 2/ /+1
(Vi) = 2[a’(a’+1)—l’1(5’1+1)]+c(02)+O/2_oz(a)

1 r ™

2(ry —rqcosf) ,. , 2]ry oy .
P (=) = (VY- #s) (40)

Now put

ar=a+d, Vi =V +VV

a.=a—d, Vi =V =V
etc., and substitute o’ = a, —a,d =c; —c,and o/ = o, —«a in (V?). If
ay, cy and o are held fixed, then the equation

(Ve = (Vi)L (41)

must be true for arbitrary a, ¢, and a. Their coefficients must thus vanish.

This yields the integral relations

— 0 1 [(—(asr+1
( 2 208 )_ 1 ((a+2 ) 4 O‘+> (42)
™mr Cy L] 1
from the coefficient of a, and
(r1 —rgcosf) (ay —agry) 1o /. =\ (cp+1)
rir? - orr? (7’2 . V1> 2 (43)

from the coefficient of c. The coefficient of o gives an equation equivalent to
(42).

Furthermore, if can be show that (see problem)
¢ L e
%:/dn ﬁC’A (7"2 : Vf) Py (cos @)
L +1) =L +1) —A(A+1))

,rC

— dr,
%:/ 7 Ccrire 2

Cy (1) Py (cos @) (

and similarly for (f’g VY ) with {; and [} interchanged, then it follows that

C C

Y e rot
— . = — AA+1 44
r2 <2 V1> CLTr1To (A+1) (44)




and
C+

L (VT = 1)~ b (4 1) (45)

72 CLT1T9

where equality applies after integration and summation over A,

Thus Eq. (43) becomes
(r1 —rocos®) (ar — ayry) AA+1)  (cy+1)

rir? T cr? 72 (46)
Problem
Prove the integral relation
Z/dn f(ry,m) i <jrg(7")> Ca <f2 : @f) Py (cos )
- Z/d i }2 2) 4(1)Cy (1) Py (cos 0)
" ( (lp+1) = 51(11;- 1) — A(A+1)) (47)

where g(r) is an arbitrary function of r and the coefficients Cy (1) are the
angular coefficients from the overlap integral

/ dQ YY1, 72) VM, (71, 72) = 37 Ca(1)Pa(cos 1),
A
Hint: Use the fact that I3 is Hermitian so that
[dr (3Y)y'g(r)y = [ dr Y"I(g(r))

with l1 = % x V1. It is also useful to use

1
2L +1

cos Pr(cosf) = [L Pr—1(cosf) + (L + 1)Pry1(cosb)]

(48)

(cos*@ — 1) Pp(cos )
B L(L—1)
- (2L-1)(2L+1)

2(L*+ L —1)
(2L — 1)(2L + 3)

Pr(cos0)

Pr_5(cosf) —
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(L+1)(L+2)
(2L +1)(2L + 3)
L -1)
(2L —-1)(2L +1)
(L+1)(L+2)
(2L + 1)(2L + 3)

together with a double application of the integral recursion relation

Tpm (15 (T)> = (@2L+ 1)1 <7’117"29(T)> + 1 Ciﬂﬂr))

Pr.o(cos @)

[Pr_2(cos @) — Pr(cosf)]

[Pr12(cosf) — Pr(cosf)] (49)

——4g
rdr
Of course

BV, L (P Po) = (4 1)V L (P, 7o)
Begin by expanding

B(gY) = YBg+ gV +2(Lg) - (LY)

and show that
oo ri dg

(hg) - (LY) = - V1Y and (50)

o ARG

1d
5%9(7’) = 2riracos Hrdi + r%r%(cosz 0 — 1);5

T
rdr

The proof amounts to showing that the term [2g(r) can be replaced by A(A+
1)g(r) after multiplying by Pj(cosf) and integrating by parts with respect
to the radial integrations over r1, 7o and r = |} — 7|. Remember that cos 6
is just a short-hand notation for the radial function (rf + r3 — r?)/(2rirs).

General Hermitian Property

The requirement that the various operators appearing in the Hamiltonian
be Hermitian implies some very interesting and useful properties that lead
to a symmetric form of the Hamiltonian matrix elements that are simple to
evaluate for states of arbitrary angular momentum. Again for brevity, let
(f)r stand for the matrix element (F'|O|F) of some Hermitian operator O
acting to the right, and (f); the same operator acting to the left (such as V3
or Vi - V3). Then each combination of terms of the form

(fYr=a*fi +afy +abfs + V2 fs +bfs + afsVi + 0V + f5(Y)  (52)
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acting to the right can be rewritten
(flr = (ay —a)’*fi+ (ar —a) fo+ (ay —a)(be = b) fs+ (be — b)*fu
+ (b = b) f5 + (ay —a) fsV]' + (b = b) 7 V3 + fs(Y)

acting to the left, where as usual V] acts only on the spherical harmonic
part of the wave function denoted for short by Y, and and integration over
the rhs is assumed. Since these must be equal for arbitrary a and b,

a’ fitayfotaiby fs+by fatbyfstarfoV] +bif7rVy + fs(Y) = fs(Y) =0
(53)
Adding the corresponding expression with Y and Y’ interchanged yields

1 1
a’fi+aifo+aibyfs+ 05 fi+bifs+ §(l+f6V1+ + §b+f7V2+ =0 (54)

Subtracting gives

Fs(¥) = oY) = =S la fo¥1 + b, V3] (55)
a[—2a; fi —2fo — by fs — fsVi] =0 (56)
b[=2by fs —2f5 —ay fs — [:V3] =0 (57)

Adding the two forms gives

e+ (f)r= §<ai tad)fitaifot ; (@be +a-b-)fs
g2+ B0+ by fs + 5 folan Vi +a V)
+;(b+V2+ +0Vy) + f(Y) + fo(Y)

Subtracting 5 x Eq. (54), where x is an arbitrary parameter, gives

()r+{flr = ;[(1 —x)a; +a’]fi+ (1 - g)cufz + ;[(1 —x)asby +a_b_]fs
410 =+ B (1= D) fbe 2ol = D)a Vi + 0 91]

bRl 20,95 +b.T5] 4 f(¥) + (V)
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If we choose x = 1, then

(Pt (e = Sl fitash+ab fs+ 0 fi+bf

4 (;va + a_V1> fo + (;mv; +b_V5 ) fal + RY) + f:(Y)

The General Hermitian Property for arbitrary x then gives

1 1 T
Vi = Z{P[(l —x)ai +a® +2(1 - 5)a+ — 2L (1 + 1) + 13(1, + 1)]
1
2
- 21— 2)asa; +acas +2(1 = Hau] + (1 - w)a? + o]
1

2(ry — rocos )

72 [(1 - 37)(@_1_ - CV+T1)C+ + (CL_ — CY_TQ)C_]

219 T, . o« e (=) + A +201 = L)y
— ﬁ[(l — §>C+T2 : VIL + C_T2vl] + * 2 2 }

. Use [from Egs. (44), (45), and (46)]

—27’2

T, .o LS 2
7"17“2 [(1 — §)C+T2V1 -|—C_7“2V1] = 7%

- S+ D+l + 1) 59)

(1= DAG D)

2(ry — rocos )

T%[a—(CM +1)]

c_
a_ —a_ry)c. = 2—
rir? ( 1) Ch

(59)
(60)

1
+ T—[OL_aJr +a_(ar +2)] —a_ay
1

and

2(ry — r9 cos )

172 (ay —ayr)ey = 2 —T%[a+(a+ +1)]

1
+ F[CL+O€+ + O‘+(a+ + 2)] - Cy%— (61)
1
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Substituting into V? gives

1.1
vfzz4@ﬂ—u—xmi+ﬁ—Hm++my—;Am+¢)
1
_ _ 2c_a_
2L+ (1 ) =2 D+ ) = T (a4 1)]
Cy Cy Cy
2 x c_
—— |~ —w)ag(ay +2) +a—a +2(1 = J)ay — —[a—og + a(as + 2)]1
(] 2 Cy
2 2 € 1 2 2 X
—(l-2)al +ao —2—a oy + - |1 —x)c; +c- +2(1 — Z)ey |}
o r2 2
This has the form LA B C
9 1 1 1
) i T N 2
Vl 4{T%+T1+T2+ 1‘| (6)
with
Ai(A) = —u—xmi+a€+ﬂu+2u—;puA+n—ahm+4x1—jq
+
_ 2c_a_
2+ 1)1+ =) = = g+ 1) (63)
Cyt Cy
By = 2|(1—2)as(ay +2) —a_a_ —2(1 — Z)our
-+Zm_a+4-a_au.+2n (64)
+
O = (1-2)E +&+2(1- ;)c+ (65)
Dy = —(1—z)at +a% — 2C;a_&+ (66)

C+

Choose = = 1 to eliminate the large a% terms. The complete Hamiltonian is
then (in Z-scaled a.u.)

H = —-V?-=
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The effective radial part Hy is then

1 [A(A Bi+8 (C Ao(A By +8(Z—-1)/Z
Hy = _[ 1(2)+ 4 4+ D+ Dot 2(2)+ 2 ¥8Z = D/Z
8 1 T r 5 9
1 1
r )
Interpretation

Eq. (68) defines the effective radial part Hy of the Hamiltonian operator H.
H) depends explicitly on A through the coefficients A;(A) and Ay(A) (unless
one chooses x = 2). Recall that, just as in Eq. (36), this just represents the
integrand in an expression that must still be integrated over radial coordinates
and summed over A to obtain the expression

(F'|H|F) = ¥ [dr,Cy(1) Py (cos0) F'HyF (69)
A
where . . -
/dTr :/0 7“1d7”1/0 rodrsy ‘/m_rzrdr (70)

and the coefficients Cy(1) are the coefficients corresponding to the simple
overlap integral (i.e. Tg = TY = 1) in the general angular integral (23).
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