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LECTURE 1: APPENDIX

e Use of group theory for energy levels:
Before we said that rotational symmetry leads to the [, m quantum num-
bers, but not necessarily n. However, in certain special cases that can be
solved exactly, such as the harmonic oscillator and the hydrogen atom,
there is a dynamical symmetry characterized by the Runge-Lenz vector A
defined by
A =p x L — mkt

corresponding to a Coulomb (or gravitational) potential V(r) = —k/r. A
is then an additional dynamical constant of the motion, in addition to
energy and angular momentum.
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In quantum mechanics, one can then define raising and lowering operators
(ladder operators) for the principal quantum number n, just as you can for
the magnetic quantum number m in the case of angular momentum, and
obtain the Rydberg formula for the energy levels
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See T.H. Cooke and J.L. Wood, Am. J. Phys. 70, 945 (2002)
https://aapt.scitation.org/doi/pdf/10.1119/1.14912627class=pdf
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Brian Judd in his book Angular Momentum Theory for Diatomic Molecules
(Elsevier, 1975) also discusses the Runge-Lenz vector in connection with
the the four-dimensional group R(4) and the four-dimensional spherical
harmonics Y}, (£2). This is the symmetry group of both the rigid rotor
and the hydrogen atom.
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in (p* + po*) and (p"™ + pe?). These are removed by taking
v =—27 _ @ (3.20)
P = et '

the term 4p.*’* being included in anticipation of normalization requirements
for the hydrogen atom. Eq. (3.23) now takes the remarkably simple form,
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w(Q) d'. (3.30)

3.7 THE HYDROGEN ATOM

Equation (3.30) is an example of a Fredholm equation of the second
kind [38]. The general method for solving such an equation is to expand
both kernel and function in some series of orthonormal polynomials,
thereby obtaining a series of equations for the coefficienta in the expansion
of the function. The natural choice for our polynomials is the four-dimen-
sional spherical harmonics. If we specialize to the hydrogen atom, we
can set R = 0, corresponding to a charge Ze at the origin. To expand the
kernel csc? «/2, we can use Eq. (2.44), getting

0@ = 2= T [ Yt @) Yum(@p(@) a.

We now develop ¢(1) as a series of spherical harmonics:
F{ﬂ} = E al?&prﬂ.p{n}-
W
The integration over Q' can be performed at once, and we get
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To obtain equations for the coefficients a,,, both sides of this equation
are multiplied by Y.rw*(Q) and the integration over 2 is carried out.
The resulting secular matrix is diagonal, and for its determinant to vanish
we must have

1 = Z/aiponi
for some positive integer n. Thus an acceptable energy is
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e WIPM examples of precision measurement:
— Precision measurement of the weak Einstein equivalence principle in
Ming-Sheng Zhan’s lab.

— Fine structure measurement in Lit 2 3P by Kelin Gau and Hua Guan
(in progress).

— Fine structure measurement in He 2 3P, 2 35 — 2 3P transition fre-
quency, and m,/m, mass ratio from HD by Shui-Ming Hu et al. (USTC,

Hefei) with Krzysztof Pachucki. Requires spin-dependent theory up to

order ma’” = mc2a” = o a.u.

e Relativistic units:
fi=c=1. Then €?/47ey = a.
e HOMEWORK

1. Read Sects. 2.1 and 3.1 of “Variational Methods,” (see distributed
notes) and complete the derivation of the Schroedinger equation (102)
from the Hamilton-Jacobi equation (100). (Hint: compare with (30)
and (31) as an example.)

2. Complete the derivation of the Dirac equation by writing
E = coy,p, + coyp, + ca.p, + Bme
Square both sides and compare with
E? = 2p? + mec!
to obtain the anticommutation relations

ooy + oo, = 0 and similarly for z, 2 and y, 2
o, + fa, = 0 and similarly for y and z.
What is the simplest matrix representation for the a’s and 3, and why
is a 2 X 2 representation in terms of Pauli spin matrices not possible,

even thought the Pauli spin matrices also anticommute?
Hint: The Pauli spin matrices are

_(0 1) _(0 —2') _(1 0)
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Show that the matrices anticommute so that 0,0, + 0,0, = 0 and
similarly for xz and yz, in addition to the usual commutation relation
02, 0] = 2i0..



