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Instructor: Gordon Drake, University of Windsor Sponsored by USTC,
organized by WIPM October 9 to November 13, 2019

LECTURE 1: APPENDIX

• Use of group theory for energy levels:
Before we said that rotational symmetry leads to the l, m quantum num-
bers, but not necessarily n. However, in certain special cases that can be
solved exactly, such as the harmonic oscillator and the hydrogen atom,
there is a dynamical symmetry characterized by the Runge-Lenz vector A
defined by

A = p× L−mkr̂

corresponding to a Coulomb (or gravitational) potential V (r) = −k/r. A
is then an additional dynamical constant of the motion, in addition to
energy and angular momentum.
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In quantum mechanics, one can then define raising and lowering operators
(ladder operators) for the principal quantum number n, just as you can for
the magnetic quantum number m in the case of angular momentum, and
obtain the Rydberg formula for the energy levels

En = −k/a0
2n2

See T.H. Cooke and J.L. Wood, Am. J. Phys. 70, 945 (2002)
https://aapt.scitation.org/doi/pdf/10.1119/1.1491262?class=pdf

Brian Judd in his book Angular Momentum Theory for Diatomic Molecules
(Elsevier, 1975) also discusses the Runge-Lenz vector in connection with
the the four-dimensional group R(4) and the four-dimensional spherical
harmonics Ynlm(Ω). This is the symmetry group of both the rigid rotor
and the hydrogen atom.
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Judd: Angular Momentum Theory for Diatomic

Molecules
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• WIPM examples of precision measurement:

– Precision measurement of the weak Einstein equivalence principle in
Ming-Sheng Zhan’s lab.

– Fine structure measurement in Li+ 2 3P by Kelin Gau and Hua Guan
(in progress).

– Fine structure measurement in He 2 3P , 2 3S − 2 3P transition fre-
quency, andme/mp mass ratio from HD by Shui-Ming Hu et al. (USTC,
Hefei) with Krzysztof Pachucki. Requires spin-dependent theory up to
order mα7 = mc2α7 = α5 a.u.

• Relativistic units:

h̄ = c = 1. Then e2/4πϵ0 ≡ α.

• HOMEWORK

1. Read Sects. 2.1 and 3.1 of “Variational Methods,” (see distributed
notes) and complete the derivation of the Schroedinger equation (102)
from the Hamilton-Jacobi equation (100). (Hint: compare with (30)
and (31) as an example.)

2. Complete the derivation of the Dirac equation by writing

E = cαxpx + cαypy + cαzpz + βmc

Square both sides and compare with

E2 = c2p2 +mcc4

to obtain the anticommutation relations

αxαy + αyαx = 0 and similarly for x, z and y, z

αxβ + βαx = 0 and similarly for y and z.

What is the simplest matrix representation for the α’s and β, and why
is a 2× 2 representation in terms of Pauli spin matrices not possible,
even thought the Pauli spin matrices also anticommute?
Hint: The Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,
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Show that the matrices anticommute so that σxσy + σyσx = 0 and
similarly for xz and yz, in addition to the usual commutation relation
[σx, σy] = 2iσz.
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