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INTRODUCTION

Variational principles derive from a cer-
tain aesthetic and metaphysical ideal of sim-
plicity in the search for the principles under-
lying physical phenomena. The origins date
back to the earliest Greek philosophers
Thales (c. 600 B.c.) and Pythagoras (c. 550
B.C.). Aristotle (384-322 B.c.) clearly makes
use of a variational principle to justify cir-
cular orbits for the planets when he says in
de Caelo I1

Now of lines which return upon them-
selves, the line which bounds the circle
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is the shortest, and that movement is
the swiftest which follows the shortest
line.

This marks the first use of a “minimum” pos-
tulate, and the conclusion held sway until
the time of Kepler (1571-1630). Hero of Al-
exandria (c. 125 B.c.) made the first rigorous
use of a variational principle when he proved
that when the angle of incidence equals the
angle of reflection, the path taken by a ray of
light from the object to the observer is
shorter than any other possible path with
fixed end points (see Catoptrics by Hero in
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Cohen and Drabkin, 1958). This later be-
came Fermat's principle of least time in geo-
metrical optics.

The belief that nature is in some sense
“simple” and can be explained by some eco-
nomically small number of postulates per-
vades the works of Galileo (1564-1642),
Newton (1642-1727), and Leibniz (1646—
1716). Although some of the early conclu-
sions turned out to be scientifically un-
founded, the philosophical basis for varia-
tional principles has great antiquity. They
continue to guide the development of new
physical theories at the most fundamental
level and to provide powerful methods of
practical computation. Perhaps most impor-
tantly, they bring out the structural analogies
between superficially different phenomena
and allow techniques developed in one field
to be readily applied in another. At a funda-
mental level, practically all physical phenom-
ena can be expressed in terms of variational
principles that have a striking similarity.

The calculus of variations provides the ba-
sic mathematical tool for formulating and
analyzing variational principles. The pur-
poses of this article are first to give an over-
view of the calculus of variations, and then
to discuss its application to a variety of
physical phenomena. There is a vast litera-
ture on both aspects, and only a few of the
most important points can be covered in the
space available. Only a few principal refer-
ences are given, with further general refer-
ences in the reading list at the end. The
main emphasis is on applications to classical
mechanics and bound-state problems in
quantum mechanics. Except for a brief dis-
cussion of the Feynman path integral, ap-
plications to scattering problems are not
covered. An informal and instructive intro-
duction to variational methods can be found
in Hildebrand and Tromba (1985).

1. TECHNIQUES OF THE CALCULUS
OF VARIATIONS

In its simplest form, the calculus of vari-
ations addresses the problem of finding the
function y(x) for which the integral

I = [‘: fx,v,yv)dx (1)

is an extremum. The integrand f(x,y,y,) is
some prescribed function of the indicated
variables, where y, = dy/dx, and x,, x, are
fixed end points. J is termed a functional of
y(x). As originally formulated by Euler, the
problem is solved by considering infinitesi-
mal variations dy(x) about a particular path
y(x) connecting x, and x, (see Fig. 1) and de-
manding that the variation & induced in J
vanish. For example, one might choose the
variations to be dy(x) = en(x), where 7n(x) is
an arbitrary function such that n(x,) = n(x;)
= 0 (to make the variation vanish at the end
points), and € is a small parameter control-
ling the size of the variation. Then &y, (x) =
edn(x)ldx, and from a Taylor series expan-
sion of f(x,y,y.) about € = 0 in Eq. (1), the
induced variation in J is

e of dnx)
& = EL [ay nw) + - 2)

up to terms of first order in e. An integration
of the second term by parts yields

s ”i_ii]
. + EL [ay Ty n(x)dx.
(3)

& = e%n(x)

The first term vanishes by the assumption
that n(x) = 0 at the end points. Since n(x) is
otherwise an arbitrary function, the condi-
tion & = 0 can be fulfilled only if the inte-
grand of the second term vanishes identically
for x; < x < xy; i€,

1_-—L=o 4)

This is the basic Euler-Lagrange equation.
For purposes of compactness, the functional

(z2,92)
y(@) + en(a) ...
“W 7 y(z)
(zlvyl)

FIG. 1. lllustration of the actual path y(x) and the
varied path connecting fixed end points.



dependence of [ on its various arguments is
usually suppressed, as is done here.

Any solution to Eq. (4) satisfies the varia-
tional condition & = 0. However, J itself
could be a minimum, a maximum, or a
point of inflection. One often knows from
the geometrical nature of the problem being
solved which case applies. Otherwise, it is
necessary to extend the Taylor series expan-
sion of f(x,y,y,) to terms of order € and de-
termine the sign of the second-order varia-
tion &?%J (see, e.g., Courant and Hilbert,
1966). If 827 < 0, then J is a maximum; if
82J > 0, then J is a minimum; if 8?7 = 0,
then J lies at a point of inflection.

If the end points are not fixed, then n(x)
does not vanish there. In this case, Eq. (4)
still applies, subject to the condition that af/
dv, = 0 at the end points (see Jeffreys and
Jeffreys, 1972).

An important special case of Eq. (4) oc-
curs if f(x,y,v,) does not depend explicitly on
x because then the integrating factor is sim-
ply y,. After multiplying Eq. (4) through by
v, and using
d _of

—_ ==y

B0
dx a:v..\'+

ay, dx )

(since df/ax = 0 by assumption), the Euler—
Lagrange equation becomes

d

a (.VV\' g- = f) =0, (6)
and so

¥, (:f — = const. (7)

A classic example is provided by the
brachistochrone (shortest time) problem first
propounded by John Bernoulli in 1696. It
was solved by both him and his brother
James, as well as by Newton and Leibnitz.
Consider a bead sliding without friction on a
wire of arbitrary length connecting two fixed
points (x,,y,) and (x,,y,) in a vertical plane,
as shown in Fig. 2. The problem is to find
the shape that minimizes the travel time as
the bead slides from rest under the force of
gravity; i.e., to find the function y = y(x)
such that the integral
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I (xz,yz)

N

FIG. 2. The brachistochrone problem of a bead slid-
ing without friction on a wire of arbitrary length in a
vertical plane.

r= f-d—s (®)

gV

for the travel time is a minimum. Here ds =
[(dy/dx)®> + 1]1'"dx is the element of arc
length and v is the velocity. By conservation
of energy, the velocity after falling a distance
v (measured downward) is v = 2gy (inde-
pendent of x), where g is the acceleration
due to gravity. The integral to be minimized
is then

X2 Z 1 1/2
= %,—,’rdx. ©)

With f(x,y,y.) defined by the above integrand,
the Euler-Lagrange equation (7) then gives

2 2 12
Vs (s + 1)
2 + 1)%2 2 =c'?, (10)
and hence
112
y;‘Ed—x=( 24 ) ; (11)
ly 1 —cy

where ¢ is a constant of integration that de-
termines the distance scale. Assuming that
the bead starts from the origin, integration
of this equation yields

cx = sin~'(ey)'"? — (cy — cHyH)'"2. (12)

This is the equation of a cycloid symmetric
about the minimum at ¢y = 1. The scale fac-
tor ¢ is determined by the condition that the
curve pass through the second terminus
(x3,95). If y, = 0 (as in Fig. 2), then ¢ = 7x,.
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1.1 Variations with Constraints

There are many classes of problems
where the functional J must be made an ex-
tremum subject to a subsidiary condition of
the form

J"Iz fi(x,y,y,)dx = const. (13)

The example of a hanging chain of fixed
length is discussed in the following para-
graph. Such problems can be handled by ap-
plying the variational procedure to the func-
tional

glryy) = fleyy) + Mfilxyx), (14)

where A, is called a Lagrange undetermined
multiplier. The resulting Euler-Lagrange
equation is

.44 ,(L-44) (15)

or, if f and f; are independent of x, the first
integral is [cf. Eq. (7)]

of ( oy )
y——F+ My—— = const. (16)
Y2 g f+xn . fi

The idea is to solve Eq. (15) or Eq. (16) for a
fixed but arbitrary value of A,. The equation
of constraint provides the additional condi-
tion to determine A, at the end of the prob-
lem, together with the two constants of inte-
gration.

As an example, consider the problem of
finding the shape of a uniform hanging chain
with both ends fixed. The shape is such that
the potential energy due to gravity is a min-
imum, and so the quantity to be minimized
1S

J = [ uey(y? + 1)"2dx, (17)
3]
subject to the constraint
L X2
L dSEJ (2 + 1)"2dx = L, (18)
Xy

where u is the mass per unit length and L
the length. Thus f = ugy(y? + 1)'"? and f, =

(y2 + 1)"2, After dividing by pg and defining
A = A\ /ug, Eq. (16) gives

1

2
(v + A)[ 3¢ - (2 + 1)"2] ==

(y.% + 1)1/2
(19)

As for the brachistochrone problem, this
equation can be solved for y;' = dx/dy and
the result integrated to obtain

¢y = —cA + coshlc(x — a)], (20)

where a is the second constant of integra-
tion. The three parameters a, ¢, and A are de-
termined by the three conditions that the
curve pass through the points (x;,y,) and
(x,,y,) at the ends of the chain, together with
the equation of constraint. For example, if
the two points are (0,0) and (x,,0), then a =
x3/2, cA = cosh(cx,/2), and the equation of
constraint becomes

¥ = sz (sinh?[c(x — %xz)] + 1}2dx

= % sinh(cx,/2). (21)

Solving this transcendental equation deter-
mines the remaining constant c¢. The quan-
tity T, = pglc is the force of tension in the
chain at the lowest point, where y, = 0.

1.2 Generalizations

In applications to mechanics (see Sec.
2.1), the time ¢ plays the role of the indepen-
dent variable x marking the evolution of the
system, but there are typically several depen-
dent generalized coordinates g; and ¢; = dg;/
dt,i = 1,..., N, in place of y and y,, re-
spectively. With this change in notation, f be-
comes a function of all the g/'s, ¢;s, and ¢,
and the generalization of Eq. (4) is

it U RO (22)

There are thus N coupled Euler-Lagrange
equations, one for each degree of freedom of
the system.

If in addition there are several indepen-
dent variables ¢, t,, ..., t,, then Eq. (22) is
further generalized to read



(23)

There can also be several equations of
constraint of the form of Eq. (13) with inte-
grands f(t,,:,4:), k = 1,..., m. In this case,
m Lagrange undetermined multipliers A; are
introduced, and the function f in Eq. (22) or
(23) is replaced by

m

gtq04:) = (t,9:.9:) + ‘zo Mfitigog).  (24)

Constraints that can be expressed in inte-
grated form, such as Eq. (13), are said to be
holonomic (wholly named or specified).
However, problems often arise in mechanics
involving nonholonomic constraints that can
only be expressed in differential form, such
as a relation between velocities. An example
is the problem of a vertical disk of radius R
rolling without slipping on a plane. Four co-
ordinates are required—the (x,y) Cartesian
coordinates of the point of contact between
the disk and the plane, a spinning angle of
rotation 6 about a vertical axis, and a rolling
angle ¢ about an axis perpendicular to the
disk. If the plane of the disk is initially per-
pendicular to the x axis (i.e., 6 = 0), then
the constraint of “not slipping” corresponds
to the differential relations

dx = Rsinfda, (25)

dy = —R cosfdé. (26)
These equations cannot be integrated with-
out knowing in advance 6 and ¢ as a func-
tion of r. However, the method of Lagrange
undetermined multipliers can still be ap-
plied. If the general form of the differential
constraints is written as

N

2 ardg; + apdt =0, k =

i=1

SRR O 7.7 5

where the coefficients a,; are, in general,
functions of the ¢;/s and g;'s, then the gener-
alization of Eq. (22) for nonholonomic sys-
tems is

of of

9q; dt"q'+x§' Aap; =0, i=1,...,N
(28)
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This equation can still be used even if the
constraints are in fact holonomic. The term
3}~ 1Aar; can be identified with the general-
ized forces of constraint. In general, the A,
are now functions of the g/s and ¢;/s. The
term a; dt in Eq. (27) does not contribute to
Eq. (28) because the variations &g; from the
actual path are considered to occur at a par-
ticular instant of time (see Sec. 2.1).

As a simple illustration of the versatility
of the method, consider the problem of find-
ing the function u(x,y,z) such that the square
of its gradient is a minimum in a given vol-
ume of space. The problem is then to mini-
mize

i f j f fdxdydsz, (29)

with

e =) -G () oo

This can be regarded as an application of
Eq. (23) with the three independent variables
t; = x,t, = v, and 13 = z, and a single de-
gree of freedom (N = 1) with g, = u. Equa-
tion (23) then immediately gives

2 62
Z

Pu %
ox?

b

2|
N BN
Qs
~

+ =0, (31)

which is Laplace’s equation. The term dfldq,
= dflou does not contribute because f does
not depend explicitly on u«, only on the par-
tial derivatives au/dx, ou/dy, and ou/oz. This
problem clearly illustrates the way in which
functional derivatives are to be interpreted
and should be carefully studied.

2. APPLICATIONS TO CLASSICAL
MECHANICS

The elements and techniques of classical
mechanics are covered under MECHANICS,
CrassicAL. This section draws together the
connections with variational principles.

2.1 Introductory Concepts

Consider a classical system of n interact-
ing particles having masses m, located at po-
sitions r, = (x,,X,%,3), and acted on by
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forces F, = (F,,F,,F,3) due to the other
particles and any external forces, including
forces of constraint. The evolution of the sys-
tem is obtained by solving Newton’s equa-
tions of motion

m&y=Fgp s=1,...,n;5 =1,2,3. (32)

These equations are completely general.
However, it is often more convenient to re-
place the 3n Cartesian coordinates x,; by
generalized coordinates q; defined through a
system of connection equations of the form

xs.i o= xs.i(qhqb sy 'q3n)- (33)
The use of generalized coordinates is par-
ticularly effective in problems involving con-
straints. If the generalized coordinates are
chosen such that their variations &g; do no
virtual work against the forces of constraint
(i.e., &; is perpendicular to the instantaneous
forces of constraint), then the number of in-
dependent g; needed is reduced from 3n to
3n — m, where m is the number of con-
straints.

To make these ideas concrete, consider
the example of a bead sliding on a vertical
wire hoop of radius R that is itself con-
strained to rotate about the z axis with an-
gular velocity w. In terms of the polar angles
# and ¢ = wot, the connection equations are

x = sinf coswt,
y = sinf sinwt,
z = cosf. (34)

The constraint of sliding on the hoop has re-
duced the number of independent coordi-
nates from three to a single azimuthal angle
6. A variation 86 generates a displacement of
the bead consistent with the instantaneous
orientation of the hoop, but not consistent
with the actual time evolution of the system,
which includes the rotation of the hoop.
Such variations are said to do no virtual
work, and are called virtual displacements.
From the connection equations (34), the ki-
netic energy of the bead is

T = G2 + 2 + 22)

Iml(RO? + (wR sind)?]. (35)

If the system is conservative with a potential-

energy function V(x,y,z), then V can similarly
be expressed in terms of 6.

2.2 Hamilton’s Principle

In the absence of constraints, a direct
transformation of Newton’s equations of mo-
tion (32) from the 3n Cartesian coordinates
x,; to the 3n generalized coordinates g; yields
Lagrange’s equations of motion

LE 2o, (36)

where the Q; are the generalized forces de-
fined by

n

ar.
s D PaeeS,
%= 2Fy,

(37)
A comparison with Egs. (3) and (22) shows
immediately that with the identification f =
—T, Lagrange’s equations correspond to the
variational condition

“(or + S Quailit = o. (38)
[ J

i=1

This is the most general form of Hamil-
ton’s principle in classical dynamics. The ad-
vantage gained is that 3n equations of mo-
tion have been consolidated into a single
scalar variational condition that is invariant
under coordinate transformation. In the ab-
sence of constraints, all the g; can be varied
independently so that each coefficient of &g;
must vanish separately, and Lagrange’s equa-
tions are recovered. If m constraints are
present, one need keep only 3n — m of the
q; whose virtual displacements 8g; are consis-
tent with the instantaneous constraints, as in
the rotating-hoop example of Sec. 2.1 where
only a single parameter 6 is required. One
can still consider variations in the remaining
g;, even though they would violate the con-
straints. The only difference is that the cor-
responding Q; are reinterpreted as the gen-
eralized forces required to maintain the
constraints. They can be calculated by the
method of Lagrange undetermined multipli-
ers, as described in Sec. 1.2 [see especially
Eq. (28)]. In this way, Lagrange’s equations
apply to the entire set, whether or not con-
straints are present. The invariance of La-



grange’s equations and Hamilton’s principle
under coordinate transformation guarantees
that if they are correct in Cartesian coordi-
nates (as can easily be checked), they are
correct in any other system of generalized
coordinates.

2.2.1 Conservative Systems and First
Integrals If the system is conservative,
then the Q; are derivable from a potential

function V(g;) according to Q; = -—aVidg,,
and Lagrange’s equations reduce to

d oL oL

d’ aqi - aqi i 0' (39)

where L = T — V is the Lagrangian. It is
then immediately evident from Eq. (4) that
Hamilton’s principle becomes

SIzLd1=O. (40)

This is the most useful form of Hamilton's
principle for theoretical discussion.

If 7 and V do not involve time explicitly,
then the first integral corresponding to Eq.

(6) is

aT
Zqi—_—T+V=const. (41)
i 9q;

If, further, T is a homogeneous quadratic
function of the ¢;, then the above becomes

T + V = const., (42)

where the constant can now be identified
with the conserved energy E of the system.

For the example of a bead on a rotating
hoop discussed in Sec. 2.1, the first integral
gives

Im[(R6)? — (wR sind)?] + V(6)
=T + V — m(wR sinf)*> = const. (43)

The constant of the motion here differs from
E = T + V because the time-dependent
forces of constraint do work on the system.
Overall conservation of energy is recovered
only when the work required to keep the
hoop rotating at a constant rate is included.
If N. is the required torque, then, with the
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use of Eq. (43), the rate at which it does
work is

d d oo odly

N.w = Z(T + V)= Em(wR sinf)” = wdr .
(44)
where I. = mw(R sinf)? is the angular mo-

mentum of the bead about the z axis. Thus
N. = dL./dt as expected.

2.3 The Hamilton-Jacobi Equation

The variations considered thus far are
taken between fixed end points 7, and 7, and,
therefore, necessarily do not correspond to a
possible dynamical evolution of the system.
The actual evolution between fixed end
points is uniquely defined, at least with re-
spect to local variations, and so the varied
path is unphysical. (But it is not necessarily
so for nonlocal variations. For example, two
points on a Kepler orbit are connected by
two paths, depending on which way around
the particle goes.)

The Hamilton—-Jacobi equation comes
from consideration of a different kind of
variation Ag; along a possible dynamical
path between points allowed to vary in both
space and time. In this case, it is necessary
to keep the integrated term in Eq. (3) (or its
generalizations). Suppose that ¢, and 7, are
replaced by ¢, + &, and t, + &,. There is
then a corresponding variation & in the ar-
rival time at each point along the path, so
that Ag,(1) = &,(t + &) is the variation in
path evaluated at the modified arrival time.

For definiteness, suppose that the paths
are parameterized according to

gilet) = gi(0,1) + en1), (45)

where ¢;(0,¢) is the actual path and 7,(7) is an
arbitrary differentiable function not assumed
to vanish at the end points. Then &g;(t) =
en;(t) and

&t + &) = qle t + ) — gi(0,1)
=q0,t + &) — g(0,1) + ent)
= ¢;0t + 3q,(1) (46)

up to terms of first order in € and 8. Appli-
cation of the A variation to the integral in
Hamilton'’s principle then yields
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Al Ladt

12+ ot 12 12
[ Ldt—l Ldz+I SL dt

Jry + 8y
248 aL l
= Lt &
1+ 80y Z f’fh
t> .
S( - gghwa @

The last term vanishes by the assumption
that the varied path is a possible dynamical
path, and so Lagrange’s equations of motion
are satisfied. Interest therefore centers on the
integrated terms. The first term is simply
L(dt, — &t,). Using Eq. (46) to replace 8q,(t)
by &gt + &) in the second term, these
terms become

A LI Ldt = [( 2 qgi aLl)

s> L aL &],]'2”’2.

i dq; 1y + 8ty
(48)
With the definitions
aL
pi = a (49)
H = E g T = L, (50)
S = I:de, (51)

where the integral for S is taken along any
dynamical path, Eq. (48) can be written in
the form

12+ 82

AS = [—Hﬁl + Zp,.aq,- A (52)

)+ 8ty

H is called the Hamiltonian for the system, p;
is the canonical momentum, and S is called
Hamilton's principal function. For an ordi-
nary conservative system, H = T + V is the
total energy.

Equation (52) may be interpreted as fol-
lows. Since by assumption the system
evolves along a possible dynamical path
from an initial configuration (g;), at time ¢,
to a final configuration (g;), at time t,, there
will in general be only a single set of initial
velocities (g;), that satisfy these requirements

(at least with respect to small variations).
The same applies to the initial momenta (p;),
since they are connected to the (¢;); through
Eq. (49), and hence the (¢;), can be elimi-
nated from the problem. The p;'s as well as
the g/s are therefore uniquely determined
from the initial conditions at time ¢,. Since
Eq. (52) remains true as t, is varied, it fol-
lows that

aS
s _ 53
3 pi (53)
aS
B —HGp) = —H(q,.aq' () (54)

Equation (54) is called the Hamilton-Ja-
cobi equation. It is a first-order partial differ-
ential equation in N + 1 variables and does
not involve S explicitly. As it stands, a com-
plete solution involving N + 1 constants of
integration is determined from the initial
conditions

(&), - @ ), -

The real significance of the Hamilton-Ja-
cobi equation comes not from its practical
utility in solving mechanical problems, but
for the insight it gives into the structure of
mechanics, and for applications involving the
use of perturbation theory. The significance
is further elaborated after a brief discussion
of the principle of least action, Hamilton’s
equations of motion, and the theory of ca-
nonical transformations.

= (P (55)

2.3.1 The Principle of Least Action
Assume that the system is conservative and
holonomic so that H is a constant. The Mau-
pertuis principle of least action follows by
considering a restricted class of variations 4,
that are identical to the A variations of Sec.
2.3, except that Aq; = 8g;(t + &) is assumed
to vanish at the end points; i.e., the system
arrives at the same end point, but at the var-
ied time ¢t + &, and H has the same con-
stant value on the varied path. The varied
path could be the same as the actual path
except that it is traversed at a different rate.
Under these conditions, Eq. (52) reduces im-
mediately to

AS = —H(dt, — at),. (56)



However, with the use of Eq. (50) to replace
L by H, a direct evaluation of A,S from Eq.
(51) yields

AS = 4, fz S pd — H@t, = &), (57)
from which it follows that

4, [’ S pddt = 0. (58)
The quantity

W = [2 S pds (59)

defines the classical action.

This is one of many possible ways of ex-
pressing the principle of least action. A
purely geometrical form in which ¢ is elimi-
nated can be obtained as follows. If V is ve-
locity-independent and T is a homogeneous
quadratic function of the g;, then

2 pgi = 2T = § M; (94,4 (60)
1 14

where the M;,(q) are the coefficients appear-
ing in the kinetic-energy expression. The
M;;(q) can be regarded as the elements of a
metric tensor in a curvilinear coordinate
space such that the element of path length is

(dp)* = Ek M; (q)dq;dgy. (61)
14

The principle of least action can then be
written in the form

12 P2

A,J: Tdt=0=A4| [Tdp, (62)
1 1

or equivalently,
[ L —

A| (H-Vdp=0. (63)
Py

For a single particle moving in a potential V,
dp is simply the element of arc length ds
along the trajectory. In this form, the princi-
ple of least action is formally identical to
Fermat's principle of geometrical optics. One
need merely identify (H — V with a variable
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index of refraction n(s) = ¢, Je(s), which is
inversely proportional to the velocity of light
in the medium. The path taken by a beam of

light is then such that the travel time given
by

fz n(s)ds (64)

vac 5

is a minimum (or, more strictly, an extre-
mum). This justifies the solution to the
brachistochrone problem in Sec. 1, and it
demonstrates the formal equivalence be-
tween geometrical optics and the dynamics
of conservative systems.

In a recent article, Gray et al. (1996) show
that the Maupertuis principle of least action
can be generalized to a form in which W is
stationary with respect to varied paths on
which H is held constant only in the mean
and that there exists a reciprocal principle in
which the mean value A is made stationary
with respect to varied paths of constant W.
They also show that the reciprocal principle
can be derived directly from the classical
limit of the Schrédinger variational principle
of quantum mechanics (see Sec. 3.2). A simi-
lar reciprocity theorem for Hamilton's prin-
ciple provides a set of four variational prin-
ciples analogous to the four equilibrium
principles of thermodynamics.

2.3.2 Hamilton’s Equations of Motion
The basic approach in Lagrangian mechanics
is to regard the N generalized coordinates
g,(t) as the independent variables whose time
dependence is determined by the N second-
order Lagrangian equations of motion ex-
pressed by Eq. (39). The velocities g,(1) enter
only as derived quantities whose initial val-
ues, together with the initial g;(z), determine
the required 2N constants of integration. The
Hamiltonian approach differs in that the ¢,(1)
are eliminated in favor of the canonical mo-
menta p,(1) defined by Eq. (49). The p(t) are
then elevated to an equal footing with the
g{t) so that the set {g;, pli = 1,..., N}
forms a set of 2N independent variables sat-
isfying a set of 2N coupled first-order differ-
ential equations called Hamilton's equations
of motion. In what follows, we adopt the
convention that a summation over repeated
subscripts is implied, and ¢ or p without a
subscript stands for the entire set.

Hamilton’s equations of motion can be



