ods, see Ackermann (1995) and Plante et al.
(1994), respectively.

The DMC and VMC Monte Carlo methods
attempt to reduce the complexity problem
for more complex systems by the use of ran-
dom-sampling techniques. The DMC method
takes advantage of the fact that the time-de-
pendent Schrédinger equation is formally
identical to the diffusion equation in imagi-
nary time, and for large imaginary time, an
arbitrary starting solution quickly decays to
the ground state (see, e.g., Moskowitz et al.,
1982: Barnett et al, 1995; and earlier refer-
ences therein). A random sampling of initial
configurations is then propagated forward in
time to construct the wave function. The
VMC method is more closely related to the
standard variational techniques discussed in
Sec. 3.3.4. The idea is to define a trial wave
function ¥, in terms of variational parame-
ters, as in Sec. 3.3.4, and then to optimize
them over a statistical distribution of sample
points r; by minimizing an expression for the
variance such as

> (HY; — E W)W,

z v, (129)
or the energy variance given by
S (HY, — En W) Wi}
: (130)

[3 ]

Here, ¥, = W,(r;) is the trial wave function
evaluated at some particular set of values for
the electronic coordinates collectively de-
noted by r;, and the weight function w; =
w(r;) is the probability of choosing r; if the
sampling is nonuniform. The optimum strat-
egy is to bias the sampling according to the
value of a guiding function g(r;) that resem-
bles the actual ¥* as closely as possible and
to choose the reference energy E,. as close
as possible to the desired eigenvalue. Al-
though the method could be applied to a di-
rect optimization of (H), the advantage
gained by optimizing the variance is that the
sample space required for a given accuracy
is much smaller. Several sample problems
and illustrative examples are discussed by Al-
exander et al. (1991).
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3.4 Variation-Perturbation Methods

For many problems, it is advantageous to
split the Hamiltonian into two parts accord-
ing to
H = H® + gV, (131)
where the eigenvalue problem for H” can be
solved exactly (or to high precision), and V is
a perturbation whose strength is controlled
by the parameter g. If the wave functions
and energies are similarly expanded,

W= PO 4 g¥D + 2D 4 .o (132)

E = E© + gV + gE® + ---, (133)
and substituted into the Rayleigh-Ritz quo-
tient (106), then the terms linear in g give

E‘(l) s W [(gp(O)lVI ‘I,(O))

+ 2(VOH? - E‘O’I‘I"”)]. (134)

This is stationary with respect to variations
ST if ¥V satisfies the first-order perturba-
tion equation

(H(o) s E(O))l‘P(”) e (V = E(l))hp(o)) = 0.

(135)
Since by assumption
HOIWO) = EQI¥0), (136)
it follows from Eq. (134) that
EW = (YOO POIWO), (137)

The entire series of perturbation equations to
all orders can be similarly generated from
the Rayleigh-Ritz variational principle. Com-
putational methods based on these results
were first developed by Slater and Kirkwood
(1931), and by Dalgarno and Lewis (1955,
1956) (see also Dalgarno and Stewart, 1956;
Sternheimer, 1951, 1954, 1957, Schwartz,
1959). They have since been employed by
numerous other authors for a wide variety of
problems.

3.4.1 Variational Bounds A particular
advantage of the variational derivation of the
perturbation equations is its use in establish-
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dent. For example, with the replacement E”
— iha/at, the variational condition

SKW”(/)lH“” — ih fl‘t#”(t)>
ot

- 2(‘1"”(!)|V(1)11P‘°’(1))l =0 (154)

with respect to ¥'(¢) leads to the first-order
time-dependent perturbation equation

(H(ox = i %)N/‘”(z)) + V(O)I¥O1)) = 0.
(155)

This can be solved by Dirac’s method of vari-
ation of constants. Many other techniques
have been developed, but these will not be
further pursued here. See, for example, Dal-
garno (1966).

4. THE GENERAL STURM-LIOUVILLE
PROBLEM

Many of the variational techniques dis-
cussed in Sec. 3 were developed long before
the invention of quantum mechanics, in con-
nection with boundary-value problems in
classical physics such as vibrating mem-
branes. Any linear second-order differential
equation (of which the radial Schrédinger
equation is just one example) can be written
in the Sturm-Liouville form

d [y @] - .
= [K(,\)d:] Glx)y = 0, (156)

defined over some closed interval [a,b], to-
gether with suitable boundary conditions. By
application of the Euler-Lagrange equation
with fixed end points, this equation follows
from the variational condition

B Lb [K(,\-)(%)Z + G(x)_vz]dx.

and so all the techniques discussed thus far
can be applied. With the choice

(157)

G(x) = —Ag(x) + I(x), (158)

the Sturm-Liouville problem becomes an ei-

genvalue problem with A adjusted to satisfy
the boundary conditions.

4.1 The Oscillation Theorem

A great many theorems have been proven
concerning the solutions to Sturm-Liouville
problems (see, e.g., Ince, 1956). Of particular
importance for physical applications is the
oscillation theorem. Suppose that K(x), g(x),
and [(x) are all continuous, real, positive,
monotonic decreasing functions of x in the
interval [a,b]. It can then be proved that the
two-point eigenvalue problem

d

e [K(x) :—j:—] + [Aglx) = lx)ly =0 (159)

has an infinite sequence of increasing eigen-
values Ay, A, ..., with corresponding eigen-
vectors y,(x), y,(x),... such that y,(x) has
exactly m — 1 zeros in the open interval
[a,b]. The eigenvalues are entirely discrete. If
g(x) changes sign in the interval, then the se-
quence of eigenvalues becomes doubly infi-
nite with both an increasing (A};’) and a de-
creasing (A,;’) set. In either case, the
solutions are orthogonal with respect to the
weight function g(x).

The importance of this theorem (and its
extensions) is that the y,,(x) form the basis
for a generalized Fourier series in terms of
which an arbitrary function f(x) can be ex-
panded in the form

f(x) = 2 c"ly"l(x)

m=1

(160)
with

b
Cm = L Fo)g(e)dx. (161)

Since the eigenvalues are entirely discrete,
there is no integration over a continuum in
Eq. (160). Such a basis is called a Sturmian
basis set. Most of the mathematical appara-
tus developed for Fourier analysis can be
carried over directly. In fact, a Fourier series
just corresponds to the choices K(x) = 1,
glx) = 1, I(x) = 0.

4.2 Example: The Coulomb Problem

Consider the radial Schrédinger equation



ddd WxD 2l
[_Zrzdr dr+ 22 r]R(V)—ER(r)

(162)

for an electron moving in the field of a nu-
cleus with charge Z. The quantum-mechani-
cal eigenvalue problem is solved on the in-
terval [0,%] by holding Z fixed and varying E
such that the boundary conditions

lim rR(r) = 0, lim R(r) = 0, (163)
r—0 I

are satisfied for the infinity of bound states
with E < 0. There is in addition a contin-
uum of scattering solutions with E > 0.

The Sturmian eigenvalue problem differs
in that E is held fixed at some negative value
—e with € > 0, and Z is varied so as to sat-
isfy the boundary conditions. Since the ei-
genvalues to the Coulomb problem are
E.(2) = -Z%2n?, (164)
it is clear that the Sturmian eigenvalue con-
dition E,(Z) = —e can be satisfied infinitely
many times by progressively increasing both
n and Z. As Z increases, one eigenvalue after
another from the original problem is pulled
down through the value —e. The Sturmian
eigenvalues are thus Z, = n/e and the cor-
responding eigenfunctions are

B 1 (n + D) )”Z
Ril®) = Gy ((n —1-1)2n
X (2a)**(2ar)e
X F(-=n + 1+ 1,2l + 2;2ar),
(165)
where a = \‘2_6 and F(a,b;z) is a confluent

hypergeometric function. The R,(r) form a
complete set of finite Sturmian polynomials
for n = 1 + 1 that are orthogonal with re-
spect to the potential 1/r; i.e.

J; R,,,,(r)%R,,,(r)err = €0, - (166)

The Sturmian functions R,,(r) closely re-
semble the bound-state Coulomb wave func-
tions. The main distinguishing feature is that
a is a constant in the exponential factor in-
stead of decreasing as 1/m. The first N of
them differ only by a transformation of the
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basis set from the functions used to con-
struct a finite variational representation of
" in Sec. 3.4.3. The theory of Sturmian
functions therefore provides a rigorous foun-
dation for the choice of basis functions in
variational calculations, and their property of
completeness ensures convergence to the
correct answer as N increases.

5. APPLICATIONS TO
ELECTRODYNAMICS

Consider an electromagnetic field propa-
gating through a medium with a charge den-
sity p(r) moving with velocity v(r). It follows
from Maxwell’s equations that the scalar and
vector potentials introduced in Sec. 2.4.1 sat-
isfy the equations

1 A v
VA - 5 — = 167
Ry = (167a)
1 ¢
y S A e
Vo e 4mp, (167b)

provided that the Lorentz gauge condition

V-A+—1-a—<é=0
c ot

(168)
is imposed. Many other gauge choices can be
made that leave the physical fields E and B
invariant, but this one is simplest for the
present discussion.

Unlike problems involving point particles,
we are now dealing with fields that vary con-
tinuously in space. Equations (167a) and
(167b) can be derived from a variational
principle if a Lagrangian density ¥ is first
defined such that

L= j Pdxdydz. (169)
The action integral in Hamilton's principle
then assumes the four-dimensional form

1= [:zdxdydzdr. (170)
The condition & = 0 is obtained in a man-
ner similar to that leading to Laplace’s equa-
tion (31). The present case is an application
of Eq. (23) with f = ¥ and four independent
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variables t; = x,t, = y,t3 = z,t4 = t. There
will be four equations corresponding to g, =
Ay, g = Ay, g3 = A;, and g4 = ¢. The choice
of ¥ is severely restricted for fields in vacuo
by the requirement that it be quadratic in
the field components (since the field equa-
tions are linear), and relativistically invari-
ant. The only quantity satisfying both re-
quirements is a term proportional to E? —
B?. The inhomogeneous interaction terms on
the right-hand sides of Egs. (167a) are also
included with the definition

e 1AV _ 2
i 8#[(—V¢-c 81) (VA

eas ]

(171)

where the first two squared terms corre-
spond to E* and —B?, respectively, and the
third term generates the Lorentz gauge con-
dition (168). The last term is the interaction
term. A straightforward application of Eq.
(23) with the terms identified as described
following Eq. (170) then yields Egs. (167a)
and (167b).

The Lagrangian density ¥ gives the equa-
tions of motion for the fields in the presence
of a predefined matter distribution p(r,t). For
comparison, the Lagrangian L defined by Eq.
(96) gives the converse equations of motion
for particles in the presence of predefined
fields A and ¢. The remarkable point emerg-
ing from a comparison of & and L is that the
matter-field interaction term p(A:v/ic — @) in
£ is very similar in form to the second and
third terms in L. In fact, the terms become
identical with the choice p(r) = ¢é(r — r'),
corresponding to a point particle of charge g
at position r’. This suggests that the two La-
grangians can be combined into a single La-
grangian

Ly, =Ly + jiodxdydz + L (172)
where L, and ¥, are the Lagrangians for free
particles and free fields, respectively, and L,
is the remaining interaction term common to
both L and [ & dr. Hamilton’s principle and
the Euler-Lagrange equations then give the
equations of motion for the combined sys-
tem of interacting particles and fields.

The above is of course not a proof that

the resulting equations of motion provide an
exact description of nature. The derivation is
based on the supposition that something like
Hamilton’s principle remains valid for the
combined system of interacting particles and
fields, and it ignores the quantum nature of
both matter and fields. However, Eq. (172)
provides a basis for combining a quantized
description of matter fields and electromag-
netic fields into a single theory called quan-
tum electrodynamics, whose predictions have
been verified to an extremely high degree of
precision (see, e.g., Kinoshita and Yennie,
1990). It can safely be described as the most
successful theory ever invented. However,
further discussion of this topic would take us
beyond the scope of this article (see Further
Reading and the article QUANTUM ELECTRO-
DYNAMICS).

6. FEYNMAN'’S PATH INTEGRAL

This article would not be complete with-
out at least a passing reference to Feynman'’s
path integral because of the way in which it
provides an underlying coherent formalism
unifying classical mechanics, quantum me-
chanics, and optics.

Consider for simplicity the x coordinate of
a particle moving in a potential. The aim is
to construct a path integral giving the quan-
tum-mechanical transition amplitude for the
particle to move from position x, at time ¢,
to position x; at time ;. Let the state vector
corresponding to a particle at position x be
denoted by lx). In the coordinate representa-
tion

x'lx) = 8(x — x'), (173)
and by closure,
jlx)(xl =1, (174)

where 1 is the identity operator. In the mo-
mentum representation,

(plx) = Q2mh)~ 2P = (xIp)*. (175)
The remaining ingredient is the time-evolu-
tion operator e """ Tts inverse defines states

lx,t) in the Heisenberg representation such
that



bx,t) = eHf"ix). (176)
With these preliminaries, an initial ex-
pression for the desired transition amplitude
is
K(x’ l/ ,lo,’o) (x, t’ l/\.o,fo)
= (xglexpl —iH(t; — to)/h]lxo).
(177)

The key idea in constructing a path integral
is to suppose that the system passes through
a large number N of intermediate states
lxz,f) in making the above transition from
lxo,to) to lxpt) such that tp,, = t; + € with
€ = (tf — to)/(N + 1). This can be formally
achieved by making repeated use of the clo-
sure relation (174) to write

K(xp,trxo.to)

dx, 2 'de(x,‘,t,-lxN,lN)
X Gty tv—1) et g te).  (178)

Then for each intermediate step, the inner
product is

rotibeg 1oty 1)
= (xl expl —i(ty — tx_)H/Axy 1)
= (xple ™" H My _y). (179)
Using Eq. (175), this can be evaluated in the
momentum representation to obtain (with
symmetric or Weyl operator ordering)

opotieley — 15tk —1)

dp; [
2; explil prdx, — ieH (%, pp)Vh},
(180)
where Ax;, = x; — x-; and % = (x +

Xx_1)/2. Substitution of this form into Eq.
(178) then yields

K(xp tpxoito) = Jd)ﬂ d.xN dp, si0:4 d;’:r;l esy,
(181)
where
N o Ax
Sv=7 z [” s H(fk,pk)]. (182)
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Consider now the limit N = =, e = 0. Al-
though each x, separately ranges over all
possible values due to the integrations in Eq.
(181) (see Fig. 5), the quantity Ax;/e = (x; —
x;._,)le contributes a large and rapidly vary-
ing phase that averages to zero unless x; =~
X;_,. We can therefore identify Ax/e with x
in the limit € = 0 and write

1
lim SN "[ Ldl
0 h 0

(183)

1 ("
=+ | tox - Hepn =

This result provides a version of the Feyn-
man path integral with the path integrated
over all possibilities (including discontinuous
ones) in phase space. However, the result
can be carried a step further by performing
the momentum integrations in Eq. (181). For
example, if H has the form

H(x,p) = p*l2m + V(x), (184)

then a typical momentum integral has the
Gaussian form

./ [ [PL Pkdxk]}
—= 27h °xp # [2m €

B ( m )”2 [tme (._\xk)]
-~ \2mhie 2h '

Using this in Eq. (181) gives

(185)

ty
ts
ts

0 T

FIG. 5. A possible path for the Feynman integral
with six intermediate states. Each of x; through Xs
varies independently over all possible values.
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the Sturm-Liouville type. The theorem estab-
lishes that there is an infinite sequence of ei-
genvalues whose eigenfunctions have pro-
gressively more zeros between the boundary
points, and hence progressively more oscilla-
tions.

Path Integral: The integral of a function
f(v(x)) between given points in an xy plane
(or its higher-dimensional generalizations)
along a path specified by the function y(x).

Perturbation Theory: A technique for the
progressive approximation of more difficult
problems involving the solution of differen-
tial equations (for example), starting from an
exactly soluble simpler one. The difference
between the two equations is called the per-
turbation term.

Principle of Least Action: A variational
principle in classical dynamics, closely re-
lated to Hamilton’s principle, which estab-
lishes a direct connection with Fermat’s prin-
ciple in geometrical optics.

Pseudostate: A member of a set of states
obtained by diagonalization of the Hamilto-
nian matrix in a discrete variational basis
set.

Quantum Electrodynamics: A quantized
field theory describing the dynamical inter-
actions of charged particles with electromag-
netic fields.

Rayleigh-Ritz Variational Method: A
method for the construction of an approxi-
mate wave function ¥ by expansion in a fi-
nite basis set of functions with expansion co-
efficients determined by the Rayleigh-
Schrédinger variational principle.

Rayleigh-Schrédinger Variational Prin-
ciple: A principle stating that the ratio
(VMHIWI(W¥) is an upper bound to the low-
est eigenvalue of H for any arbitrary (but
normalizable) choice for the wave function
.

Schrédinger Equation: A second-order
partial differential wave equation that forms
the basis of nonrelativistic quantum mechan-
ics.

Sturmian Basis Set: The set of discrete
eigenvalues and corresponding eigenfunc-
tions obtained by solving a two-point eigen-
value problem of the Sturm-Liouville type.

Sturm-Liouville Problem: A class of sec-
ond-order differential equations of the form
(dldx)[K(x)dyldx] — G(x)y = 0, together with
suitable boundary conditions.

Spectral Representation: A representa-
tion of the Green’s function, or the terms in

a perturbation series, in terms of explicit
summations over the eigenvalue spectrum of
the unperturbed problem.

Temple Bound: A method for construct-
ing variational lower bounds to the energy
based on the square of the Hamiltonian.

Variational Bound: An upper or lower
bound on the energy or some other quantity
obtained by means of a trial solution to the
underlying differential equation, typically
with parameters in the trial solution that can
be adjusted to obtain the best possible solu-
tion.
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Further Reading

Techniques of the calculus of variations are
covered in great detail by Courant and Hilbert
(1966), and by Morse, P. M., and Feshbach, H.
(1953), Methods of Theoretical Physics, New York:
McGraw-Hill, along with most other books on the
techniques of theoretical physics. The book by
Yourgrau, W., and Mandelstam, S. (1968), Varia-
tional Principles in Dynamics and Quantum Theory,
3rd ed., Philadelphia: Saunders (Dover reprint
1979) provides an interesting and informative his-
torical perspective.

Applications of variational principles to classi-
cal mechanics are covered in a very thorough, de-
tailed, and readable manner by Goldstein, H.
(1980), Classical Mechanics, 2nd ed., Reading, MA:
Addison-Wesley. This book also contains a good
pedagogical introduction to variational principles
for continuous systems and fields. See also
Lanczos, C. (1970), The Variational Principles of
Mechanics, Toronto: University of Toronto Press
(Dover reprint 1986).

The development of field theory from varia-
tional principles is covered in many recent books
such as Ramond, P. (1981), Field Theorv, a Modern
Primer, Menlo Park, CA: Benjamin/Cummings; and
Itzykson, C., and Zuber, J.-B. (1980), Quantum
Field Theory, New York: McGraw-Hill. A good in-
troduction to the Feynman path integral approach
is given by Das, A. (1993), Field Theory, a Path In-
tegral Approach, Singapore: World Scientific, and
more detailed developments are contained in Riv-
ers, R. J. (1987), Path Integral Methods in Quan-
tum Field Theory, Cambridge, U.K.: Cambridge
Univ. Press. The original development in Feyn-
man, R. P, and Hibbs, A. R. (1965), Quantum Me-
chanics and Path Integrals, New York: McGraw-
Hill, remains an authoritative source.

A wide variety of applications of variational
principles in quantum-mechanical calculations can
be found in numerous articles throughout Drake,
G. W. F. (Ed.) (1996), Atomic, Molecular, and Op-
tical Physics Handbook, New York: American Insti-
tute of Physics. In addition, the Kohn and
Schwinger variational methods for scattering prob-
lems are covered in most books on scattering the-
ory, such as Taylor, J. R. (1972), Scattering Theory:
The Quantum Theory on Nonrelativistic Collisions,
New York: Wiley. All of the above contain numer-
ous other references to the literature and are in-
tended only as a guide.



