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1.1 Basic Formulation

In a semiclassical picture, the interaction Hamiltonian with the radiation field
is obtained by making the minimal coupling replacements
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in the full Hamiltonian in an inertial frame
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is the time-independent part of the vector potential A(r,t) = A(r)e ™! +c.c
for a photon of frequency w, wave vector k, and polarization € 1 k normalized
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to unit photon energy hw in volume V. The linear coupling terms then yield
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and from Fermi’s Golden Rule, the decay rate for spontaneous emission from
state v to 7/ is
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is the number of photon states with polarization € per unit energy and solid
angle s{) in the normalization volume V.
In the long wavelength and electric dipole approximations, the factor e’**® in
Eq. (4) is replaced by unity. After integrating over angles d€2 and summing
over polarizations €, the decay rate reduces to
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where w,, is the transition frequency and Q, is the velocity form of the
transition operator

> P (9)
for the general case of NV electrons. From the commutator

[Ho, Qr/hwy ] = Qp (10)
where Hj is the field-free Hamiltonian in Eq. (3), the equivalent length form
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After transforming to c.m. plus relative coordinates in parallel with the anal-
ysis in Lecture 5, the dipole transition operators become
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and Hp now contains the Hy,, term. If Eq. (??) is solved exactly for the
states |y) and |7}, then the identity

Q1Y) = (V1Q:Y) (13)

is satisfied to all orders in m./M. For a neutral atom, N = Z and Z, = 1. If
the oscillator strength is defined by

2Mey ( Ly

N
. “r / ) 2
o = 2 %juvg;mw|

o ol 3 L (14
N 3mehw»y/’7 Zr i i=1 pily

then the Thomas-Reiche-Kuhn sum rule > f,/, = N remains valid, inde-

pendent of m./M. The decay rate, summed over final states and averaged

over initial states, is
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where f, = —(g,/g-)fy is the (negative) oscillator strength for photon
emission, and g, g, are the statistical weights of the states.

Equivalence of Length and Velocity Forms

If the Schrodinger equation is solved exactly with mass polarization included
in the Hamiltonian, then the equation

Q1Y) = (V1Q:Y) (16)

is satisfied exactly, provided that the mass-dependent factors Z, and Z, are
included.

This generalizes the idea of mass scaling to radiative transitions. If the wave
functions are not exact, then the above equivalence of the length (Q,) and
velocity (@) is no longer exactly true. The difference in the matrix elements
provides an estimate of the uncertainty. Note that mass-dependent effects
come from the mass-polarization term in the Hamiltonian, as well as from
the Z,, Z, factors.

Einstein A and B Coefficients

As defined here, the quantity w., ./ is identical to the Einstein A coefficient,
and has dimensions ¢~!. It is related to the Einstein B coefficients by the
usual relations

5 = A%,Y/
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where B, . is the cross section for stimulated emission. The cross section for
absorption is
By, = giB“m’
g~
according to the rule of summing over final states and averaging over initial
states, with g, and g, being the statistical weights.



1.2 Oscillator Strength Table

The following table provides arrays of nonrelativistic oscillator strengths
among various states of helium, including the effects of finite nuclear mass as
a separate factor. In the absence of mass polarization, the correction factor
would be (1+ pu/M)™! ~ 1 — u/M. Mass polarization effects are particularly
strong for P-states, and for transitions with An = 0.



Oscillator strengths for helium. The factor in brackets gives the finite mass

correction, with y = /M.
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The largest relativistic correction comes from singlet-triplet mixing between
states with the same n, L, and J (e.g. 3Dy and 3°Ds) due to Hrg. The wave
functions obtained by diagonalizing the 2 x 2 matrices Hy + Hxps + Hrg are
then

U(n'Ly) = Wo(n'Ly)cos + Wy(n’Ly)sind
U(n’Ly) = —Wo(n'Ly)sing 4+ Vy(n’Ly)cosh.

Values of sin 8 are listed in Table 1.2.

Singlet-triplet mixing angles for helium.
State sin State sin State sin
2 P 0.0002783
3P 0.0002558 3D 0.0156095
4 P 0.0002498 4D 0.0113960 4 F 0.6041024
5P 0.0002473 5D 0.0101143 5 F 0.5499291
6 P 0.0002460 6D 0.0095289 6 F 0.5180737
7P 0.0002452 7D 0.0092067 7F 0.4984184
8 P 0.0002447 8 D 0.0090087 8 F 0.4855768
9P 0.0002444 9D 0.0088777 9 F 0.4767620
10 P 0.0002442 10 D 0.0087862 10 F 0.4704595

5G 0.6934752

6G 0.6931996 6 H 0.6962385

TG 0.6929889 T H 0.6962377 71 0.6979315

8G 0.6928356 8 H 0.6962372 81 0.6979315

9G 0.6927195 9 H 0.6962374 91 0.6979316
100G 0.6926329 10 H 0.6962353 107 0.6979316

8 K 0.6991671
9K 0.6991671 9L 0.7001089
10 K 0.6991671 10 L 0.7001089 10 M 0.7008507




The corrected oscillator strengths f, .+ for the singlet (s) and triplet (t) com-
ponents of a v — +/ transition can then be calculated from the values in the
above table according to

2

= (XSS,COSQ COSGI—I—Xtt,smG sin 6 ) :
£t ss 9 9 tt 9 e 2
VIS v (X5 sinbysinf,, + X, cos 6, cos :
R (X % cosf,sinf, — X', sinf, cos 6 )2
YT v ! v Y Yo
fts s tt . 2
S , (X ysin 6, cos b, — X', cos 0, sin 07/) :

where XZ°, = (f5%, /wisﬁ,)l/ ?, and similarly for X''.,. From Eq. (14), X, is
proportional to the dipole length form of the transition operator, for which
there are no spin-dependent relativistic corrections [see G.W.F. Drake, J.
Phys. B 9, L169 (1976) and K. Pachucki, Phys. Rev. A 69, 052502 (1004)].
The mixing corrections are particularly significant for D—F" and F-G tran-
sitions, where intermediate coupling prevails. The two-state approximation
becomes increasingly accurate with increasing L, but for P-states, where sin
is small, states with n’ # n must also be included.
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LETTER TO THE EDITOR

Relativistic corrections to spin-forbidden
electric-dipole transitionst

G W F Draked
Depastment of Physics, University of Windsor, Windsor, Cmtario, Canids 5B 3P4

Rieczived 26 Fehroary 1976

Abstract. Theoreticn] resulis for spin-forbidden electric-dipols transitions have recently been
guestioned on the grounds thar relativistbe corrections o the frunsition opsrator wers not
includad, It is shown here that these corrections are automatieally ipcluded when the
transition egeraior is capressed in the dipole length form. The ohove eriticcsm of previeus
dipole-lenpth caleulations is therefore unfounded. The 1s3p *P.- 15 'S, end 1s2p *P —152s
15, transitions of hahum are discussed as specific numerical cxamples.

There bas been much confusion over the years concerning the correct method of
evaluating trapsition matrix elements for spin-forbidden electric-dipole transitions. The
earlier work on the subject is reviewed by Goodman and Laurenzi (1968), and it is
discussed from a more general point of view by Drake (1972), The spin-forbidden
transition 2*P,—1'8,; in helium-like ions is of particular inlerest because precise
calculations with coerefated wvariational wavelunctions ars available [Drake and
Dalgarne 1969}, which can be compared with the measured decay rates of Sellin et af
{1968) and Moore et al (1973), The purpose of this letter is to comment on some
recent criticisms of the above theoretical work, particularly the corrections proposed
by Laughlin (1%975) to the calenlations of Drake and Dalgarno.

The contributions to the transition integral can be divided into an ‘indirect” part
coming primarily from the spin orbit mixing of the ‘P, and 'P, states, and a ‘direct’
part due to relativistic spin-dependent corrections to the p. A form of the interaction
operator, In recent papers. Luc-Kocnig (1%74) and Laughlin (1975) suggest that the
direet part was not included in previcus calculations, and Laughlin explicitly adds the
direct part to the matrix elements of Drake and Dalgarno to obtain revised transition
probabilities. We show here that this procedure is wnfounded—in fact, both the
indirect and the direct parts are automatically included, provided that the matrix
element is expressed in the é.p (dipole length) form. As a consequence, the division into
direct and indirect parts is not unique.

As shown by Drrake (1972), the lowest-order interaction energy operator responsible
for spin-forbidden electric-dipole transitions in the Coulomb gauge is§

U= Ut 4 gt i1
t Besearch supporied by the Matonal Research Council of Canada.
1 Alfred P Slonn Foundation Fellow,
§ Equation (28] of Diake (19721 is printed incorrectly. The last term should be mulizplied by 4 so thar it
agress with (3) overleal 9
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including corrections up to relative order {xZ)°, Here, ¥, = —Zerj,ma=r — 1, &

i5 the Pauli spin operator and, to suflicient accuracy, 4 = [ Zre/ 318, where & is the
unit photon polarzation veclor and e s s freguency. Equation (3) differs from
equation (1) of Laughlin only by a term syvmmetric in the spin operators. which
consequently does not contribute to singlet—triplet transitions.

The direct contribution comes from matrix elements of U, Both the direct and the
mdirect parts are included by writing the interaction energy matrix element in the form

Uyor = (O U™ o U0 (4

correct to terms of O{x*Z%), where ¢ is the non-relativistic wavelunction including
first-order corrections for spin mixing due lo the Breit interaction B (Bethe and
Salpeter 1957), Thus & is an eigenluaction of Hyy + B up to spin-dependent terms
of Oz Z°), where Hyy 15 the non-relativistic Hamiltonian. Using the explicit forms
for B and the photom vector polentizl A, il 15 easy 1o show thatl correct terms of
(7%
S U™+ DD = dml 2o 3 S [EL (g + rs)y Ha + B]|D

= 1o 2o/ 3e)V HE;, — Efdh iy éu(ry 4 o) B 15
Therefore, the contribution from U is automatically included when the mairix element
is evaluated in the dipole length form.

As a direct numerical check, the matrix elements in eguation (3) were avaluated
for the 1s2p *P, 1s* ‘S, and 1s2p *P,—1s2s '8, transitions of helium with the same
J-term correlaed variational wavefunctions as used by Drake and Dalgarno, Except
for an overall multiplying factor of —ix*(2w/3c)"?, eguation (%) for these transitions
reduces to [in atomic unis)

/ d d Vo2

a2 'Sy, i il of :} + ""4 S| 2z ) — 23+ Az — )il PP
\ = z /

= 5" T[E2*P) — En'S)] <n'Sylz, = 22 [27PL (6

where the vnprimed wavefunctions are the spin-independent eigenfunctions of .
The results shown in whle 1 demonsirete thal eguation (6] 1% correct to within the
accuracy of lhe caleulation, whether or not there 5 a change in the principal
guantum number. The degree to which eguations (5) or (6) are satisfied is an indication
of the accuracy of the wavefunctions similar to the comparison of the ‘length’ and
*velocity’ forms for allowed transitions,

In summary, the procedurs emploved by Laughlin in modifying the earlier
calculations of the 2P P, 1S, transition integral amounts to counting the contribution
from U twice. The results of Drake and Dalgarno are therefore substantially correct
as thev stand, even though the agreement with experiment is not quite as good as one
might desirg, The smadll correction shown in table | due to spin orbit mixing berween
the 'S, and doubly excited pp’ *P§ states, which was not included by Drake and
Dalgarno, becomes less important with increasing & and is negligible for the heavier
helium-like ions, 10
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Table 1, Matrix elenients for the Tans L5, -152p 3t-"-, travsmong af helivmt.

H = i 2
g il 219 — 2102
s Vipisl —— 4 — 2P ,
TS T Y (2156) | —D-2078)
v3Z [ ag L 2 gaphy —0177 0012
d' .I' r-;. E |'.l )
x2S %! 2P — (09 D119
P 1z !
Sorn of above LA — {11561
=7 HEZIP — Ein'S)] Pk —{r]1857
woCa'8L T o 2P -T2 I R

t The entries i the 1o 4 row dier from the matris elements calealated by Drake dnd
Draliarno (159 since they did not incluce 8 smaell contribution rom the mixing of the
lsis 'Sy state with the doubly excited pp *P) stutes. The valucs obained withoa: this
ancreclion are Ei'.-rn in hrackels
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Extensive calculations of spin-forbidden transitions in helium carried out by
Drake and Morton. See

D.C. Morton and G.W.F. Drake, “Oscillator strengths for spin-changing PD
transitions in He I including the effect of a finite nuclear mass and interme-
diate coupling,” Can . J. Phys. 95, 829 (2017).
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152p3 Py 5 transitions in helium-like carbon, nitrogen and oxygen including the
effects of a finite nuclear mass” J. Phys. B — At. Mol. Opt. Phys. 49, 234002
(2016).

Also, the unified method can be applied to both allowed and spin-changing
transitions for intermediate and mnuclear charge. See G.W.F. Drake, “Uni-
fied relativistic theory of 1s2p 3P, —1s2 1Sy and 1s2p ' P, — 152 1S frequencies
and transition rates in helium-like ions,” Phys. Rev. A 19, 1387 (1979).
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Unified relativistic theory for 152p *P;-152!S; and 152p 'P,-152'S, frequencies and transition
rates in heliumlike ions

G. W. F. Drake
Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
(Received 17 October 1978)

The aim of this paper is to test a simple method for converting accurate nonrelativistic predictions of
atomic properties into accurate relativistic predictions with a minimum of additional computational effort.
The method connects smoothly the exact nonrelativistic LS -coupling results appropriate at small Z with the
relativistic jj-coupling results appropriate at large Z. For the processes stated in the title, the method
appears to offer a significant improvement in accuracy over relativistic Hartree-Fock or random-phase-
approximation calculations, particularly in the low and intermediate range of nuclear charge. For large Z,
the present results agree well with the relativistic random-phase approximation.
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TABLE VII. Comparison of oscillator strengths with other calculations.

1s2p *Pi-15*1s,

1s2p 'P9-15%1s,

Z S1 Sfp J RRPA S2 JNR J RRPA
2 2,774(—8) 2.774(-8) * 3.58(—8) © 0.2762 0.2762 ¢ 0.2518 f
3 3.289%(=7) 3.322(=7)"° 3.63(=17) 0.4565 0.4566 0.4438
4 1.857(—86) 1.866(—6) 1.96(—6) 0.5512 0.5516 0.5443
5 7.082(=6) 7.107(=6) 7.32(—6) 0.6084 0.6089 0.6042
6 2.107(=5) 2.116(-5) 2.16(=5) 0.6462 0.6471 0.6435
7 5.300(—5) 5.321(=5) 5.36(=5) 0.6730 0.6742 0.6712
8 1.175(—4) 1.183(=4) 1.19(—4) 0.6928 0.6944 0.6915
9 2.369(—4) 2.393(~4) 2.39(-4) 0.7079 0.7101 0.7070
10 4.424(=4) 4.494(~4) 4.46(—4) 0.7196 0.7226 0.7190
20 0.02193 0.0222 0.7452 0.784°¢ 0.7470
30 0.1079 0.1055 0.6628 0.808 0.6661
40 0.1847 0.1837 0.5743 0.5764
50 0.2213 0.2212 0.5162 0.5175
60 0.2352 0.23857 0.4728 0.4737
70 0.2376 0.2384 0.4332 0.4341
80 0.2335 0.2344 0.3928 0.3937
90 0.2248 0.2259 0.3493 0.3504
100 0.2119 0.2131 0.3016 0.3029
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RADIATIVE TRANSITIONS IN LITHIUM

For this section, we will look directly at the papers

e 7.-C. Yan and G.W.F. Drake Theoretical lithium 2 2S — 2 2P and 2 2P —
3 2D oscillator strengths, Phys. Rev. A 52, R4316 (1995).

e 7.-C. Yan, M. Tambasco and G.W.F. Drake Energies and oscillator strengths
for lithiumlike ions, Phys. Rev. A 57, 1652 (1998).

The second paper contains and estimate of relativistic corrections and com-
parisons with a high-precision experiment for the lifetime of the 2 2P state.

15



