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1.3 ROTATIONS Molecules

One of the most remarkable features of angular momentum vectors is
their usefulness in constructing rotation operators. Consider, for example,

exp(—tal,) (& 7y) exp(ial,).
To evaluate this quantity [4], we take as our starting point

e 1y) = (1)l £1).
Thus

ey =Ly, £1) = (z1y)(l.=1)3
and, in general,
Lr(r+=1y) = (x £ iy) (L & 1)
On expanding the exponential, we at once see that
exp{—ial;) (x = 1y) = (r £ iy) exp(—ia(l, 3= 1)),
and so0
exp{ —ial.) (« &+ iy) exp(ial,) = (z x 1y) exp(Fia).  (1.7)
Since 1, commutes with z, we can immediately write down
exp(—ial,) zexp(ial)) = 2. (1.8)

In many cases, the algebra of the transformation may be sufficient for
our purposes. However, if we wish to put a geometrical interpretation on
the equations, two options are open to us. We can imagine either that the
operator exp(—ial,) rotates the vector r through an angle —« about the
2 axis, or else that it rotates the coordinate frame by an angle +a about
the axis. To make sure that all spins and momenta are similarly trans-
formed, we have merely to use exp(—iaJf,), where J is the total angular
momentum of the system.

Suppose that two rectangular coordinate frames # and F' share the same
origin but are arbitrarily oriented, one with respect to the other. To bring
F into coincidence with F', a single rotation will, of course, suffice; but if
the allowed axes of rotation are specified in advance, then three successive
rotations are, in general, necessary. If we rotate F first by v about its
z axis, then by # about the y axis of F' (i.e., about the original y axis, not
the new one), and finally by « about the z axis of F' (i.e., about the same
axis as the first rotation}, the rotation operator is

D(w) = exp(—iad,) exp(—i8J,) exp(—ivJ.), (1.9)

where w is an abbreviation for the three Euler angles «, 8, and v, Let {xy2)
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be the coordinates of a point in F and (£nf) its coordinates in F', Then
£ = D(w)xD{w)™,

with similar equations for 3 and {. For future reference, the results are
written out in full;

£t = z(cosacos B cosy — sin « 8in )

+ y{sin a cos feosy + cos asin-y) — zsin 8 cos v,

n = z(—cos a cos 8 sin ¥ — sin &« co3 )
+ y(—sin a cos A sin v + cos a cos v) + zsin B sin v,
{=zcosasing+ ysinasing + zcos . (1.10}

The inverses can be written down by making the replacements
T—E y—on 2= a——y, 0 -8, v —a.

All these equations can be obtained by repeated use of Eqs. (1.7)-(1.8)
and cyclic permutations of them. In carrying through the caleulations, we
must avoid using equations such as

e = gt = gte = ghea,

which only hold if @ and b commute. (The correct form of equations of
this type has been discussed by Messiah [5].)

There exists an alternative way of making the transformation above.
Tirst, F is rotated by « about its z axis, then this second frame (say F*')
is rotated by 8 about the new y axis. Finally, this third frame is rotated
by v about its z axis. A detailed analysis reveals that the frame so obtained
coincides with F’ (see Problem 1.1).

1.4 ROTATION MATRICES

Corresponding to the coordinate transformations (1.10), any operator T
becomes 7", where

T = D{w)TD(w)
The effect of D(w) on a ket |J, M) can only be to produce a linear com-

bination of kets with the same J, since D{w) is a function of the compo-
nents of J, for which Eqs. (1.3) are valid. Let us therefore write

D(w) |IM') = X Dypeoae? (w) | TM™)

Mt

and determine the numerical coefficients Dy ar’ (w). (For simplicity, the
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amas have been omitted from the kets.) Setting the bra (JA | to the
. of both sides of this equation, and writing M’ = N, we get
i | D(w) | JN) = Dyn’ (w)
= (JAf | exp(—iaJ,) exp(—1BJ,) exp(—iyJ.) | JN)
= exp(—i(ad 4+ ¥N)) dun’(8),

ere
dux? (8) = (JAM | exp(~iBJ,) | JN).

e derivation of the explicit form of dyx” (8) is outlined in Problem (1.2);
+ final answer is

LW+ AT — M) + NYWT — N1
V+M-)I(J—N-RI{t+ N - M)

hod (COS ﬁf."'z)!-f'!‘.\f-—.\'—!l (sin ﬂ/2)!|+h‘—-.u. (1 . 11)

This expression for dux’(8) enables many symmetry properties of the
ation matrices to be rapidly written down. For example,

dun’(8) = X (—1)!

duv’(8) = d_~y_u’(8), (1.12)
dyn’ (8) = dun’(—8) = (—1)4¥dyn’(8), (1.13}

m which we can deduce
Dyn’ (w)* = (—1)M-ND_p_y' (w). (1.14)

1 expression such as dyy’(x — ) is slightly more difficult to handle.
ywever, we have only to write £ = J — ¢/ — N, and the sum over (' can
expressed in terms of d.y~7(8). The result is

duy!(x — 8) = (—1)""Nd_ux'(B) = (—1)"+Mdy_y'(8). (1.15)

If we recall that the adjoint of an operator product AB is given by
|B)t = BtA?Y, it is at once seen that D(w)! = D(w)™", since the Carte-
i components of J are Hermitian [67]. It follows that D(w) is a unitary
erator, and that the matrices Dynx? (w), where M and N label the rows
d eolunns respectively, are unitary matrices. Thus

E D“.N"(m) *Dur.\;"(m) = 5(1‘!, N) '

M!

¥ Dyrare? (0)Dyar? (w)* = (M, N). {1.16)
At

If a ket can be represented by a wavefunction ¢(r), then the effect, of
{w) is to rotate the contours of ¢(r). However, the sense of the rotation
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is opposite to that for r itself. To see this, take y(r) in the hypothetical
form of the Dirac delta function §(r — R). Suppose that r becomes r + a

under the action of D(w). Then the wavefunction becomes 8(r + a — R),
and the singularity moves from R to R — a.

1.5 SPHERICAL TENSORS

Operators that transform under rotations in the same manner as the
kets | JA) are of great importance. If the 2k + 1 operators T.=, where
—k < g < k, satisfy

D(w)T{WD(w)™ = X Dy(w) T'et®, (1.17)

then they are said to form the components of a spherical tensor T® of
rank k. It is clear that the commutation relations that the 7, obey
with respeet to J are of erucial importance in determining the form of the
right-hand side of Eq. (1.17). In fact, we can follow Racah [7] and use

these commutation relations as an equivalent way of defining a tensor
operator, They run

I:Jls T!“’J = qTG“):
(g o] = [k(k + 1) — qlg £ 1) 1T 0u®, (1.18)

The similarity between these conditions and Eqs. (1.3) illustrates the
correspondence between tensor operators and kets.

The vector J is itself a tensor operator. To satisfy Eqs. (1.18), we must
define the components as follows:

Jl(l) = _.\/% J'i-! J'oilj — J"' J-_l(l) = \/%J_.

No adjustment needs to be made for the spherical harmonics ¥,,; they

are tensors for which & = ! and ¢ = m. It is often more convenient to use
the tensors C*), for which

4x
CG(&)(Bq)) = JQ’.,‘_—I-]_ qu(e, lf)).
It is found, for example, that
Ca® =F \/% - ﬂj - y G = ‘zl: (1.19)

Here and elsewhere, the radieal sign applies only to the fraction immedi-
ately following it.
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1.6 DOUBLE TENSORS

In the previous sections we have specified D(w) in terms of the compo-
nents of the total angular momentum J, and it is through the commutation
relations with this operator that tensor operators have been defined. It is
often useful, however, to consider the properties of operators with respect
to other angular momenta before examining their features overall. Com-
muting angular momenta turn out to be particularly valuable for separat-
ing and characterizing the properties of operators in the different spaces
spanned by the angular momenta. The orbital and spin spaces, to which
correspond the total orbital and total spin angular momentum respectively,
constitute perhaps the most familiar example. If we have two commuting
angular momenta J and J’, then a double tensor T**" can be defined by
specifying that the (2k + 1) components Too.®**" for which -k < ¢ <k
behave as a tensor with respect to J for any choice of ¢’; and, reciprocally,
the (2k' 4 1) components Ty **" for which —&' < ¢’ < k' behave as a
tensor with respect to J’ for any choice of g. The double tensor Tt
possesses (2k + 1) (2%’ 4 1) components in all.

An important example of J and J' can be constructed from the coordi-
nates {ryz)} and (&qf). Since the nine quantities (ryz, &g, afy) are con-
nected by just three equations—namely, Eqs. (1.10)—any six of them
can be taken as independent variables. If (zyz, £nl) are chosen for this
role, we can define two angular momentum vectors ! and A by means of
the equations

1
L=—_(r£—z2—), {1.20}
1 0z ay
1 d a
=<-lg=—t—- 2
¥: i(n a raﬂ), (1.21)

together with their cyclic permutations over the respective triads (zyz)
and (&qt). Having taken {ryz, Eqt) as independent variables, we know that

(Lx]=o0,

so we can make the identifications I = J, A = J'.

A physical interpretation can be given to ! and \. The vector ! is evidently
the orbital angular momentum of a particle measured with respect to a
frame F'; but since the partial derivatives d/ar, 8/dy, and 3/dz that occur
in { imply differentiation in which £, 5, and { are held constant, the particle
is stationary in F’. In other words, the frame F' turns relative to F in such
a way that the motion of the particle is precisely followed. We may evi-

1.8 Double Tenaors ]

dently express ! in terms of the Euler angles through which the relative
position of F and F’ is defined. When this is done, we get

Lo il = ie*"'(cotﬂi‘-'Fi—a-—-L-"q-)
£ ] de 38 sinfay/)’
3
L=—i—. 1.22
16(! ( )

In a similar way, X represents the orbital angular momentum of a particle
which is stationary in F. For this case,

Ae = 2N =ie*-v(cotﬂi¢£i—ii)
¢ ' 3y~ 98 sinfaa/’
A,=ii. (1.23)
dy

The partial derivatives 9/de, 8/d8, and d/dv in Egs. (1.22) are not the
same as those in Eqs. (1.23): the former correspond to a scheme in which
{£yt) are held constant, the latter to one in which (zyz) are held constant.
If we wish to use I and \ to investigate the tensorial properties of functions
solely of the Euler angles, this distinetion is irrelevant. Without further
ado, we can take the right-hand sides of Eqs. (1.22) and (1.23) for two
commuting operators ! and \.
Consider, for example, Dyn”' (w)*. We see at once that

[l Darv’ (w)*] = MDary’ (w) ¥, {1.24)

since the dependence of the D* function on « is simply e*¥=, The commuta-
tion with respect to I, is more difficuli to work out, though quite straight-
forward if cot@ and cscp are converted to functions of half angles

through the expressions
cob § = cos® /2 — sin? g/2 - cos? 8/2 4 sin? 8/2
© 2sinB/2cosf/2 ’ "~ 24gin 8/2 cos B/2

before combination with the expression for dux’(8) given in Eq. {1.11).
The result is

[l =+ iy, Dan’ (@)*] = [J(J + 1) — M(M = 1) "Dy v’ (0)* (1.25)

So, for a given N (and w), the functions Dyy’ (w)* behave as tensor com-
ponents Ty’ with respect to .



10 ! Tensor Algebra

When we turn to \, a slight complication arises. The commutation rela-
tions turn out to be

[h, Dun? (w)*] = —NDun’ (w)*,
[h 2 ihg Dus?(@)*] = ~[J(J + 1) — N(N F 1) I1Dyr v (w)*.
(1.26)

To get s minus sign in the first equation, we need to assign a tensor com-
ponent g of —V to Dyx’(w)*. The minus sign in the second equation
requires an alternation of sign with .V for the tensor components. This is
most conveniently achieved by means of a phase factor (~1)/—¥. The
presence of J in the phase serves to eliminate complex quantities when N
is half-integral.

We can now define a double tensor D through the equation

Dy sV = (=1)7¥(2T 4 1) Dy’ (w)*. (1.27)

The factor (2J 4 1) simplifies various calculations, as we shall see
later on. It is understood that DY refers to a specific value of the Euler
triad w.

1.7 COUPLING

The coupling of two angular momenta A and B to form a third, C,
is familiar to all spectroscopists. It is supposed that A and B refer to
difierent physical systems, or else to independent parts of the same system.
This guarantees that A and B commute, thereby ensuring that C, which
is defined by C = A + B, satisfies the commutation relations (1.2). To
simplify the notation as much as possible, let us write the cigenvalues of
A? and A, as A(A + 1) and a respectively. Two types of ket are now
available for describing the combined scheme. We can choose either the
uncoupled form | 4a, Bb), or the coupled form | Cc). For a given A and B,
there are (24 + 1) (2B + 1) kets of the first kind; and if we use the fact
that C can run with integral steps from 4 4 B down to | A — B, it can
be easily checked that there are an equal number of coupled kets. The
unitary transformation that connects the two descriptions can be written

| Ce) = X (Aa, Bb| Cc) | Aa, Bb). (1.28)
a.b

The coefficients (Aa, Bb| Cc) are the celebrated Clebsch-Gordan (CG)
ceefficients. Phases can be chosen so that they are all real. By operating
on both sides of Eq. (1.28) with €. (= 4, 4 B.), we at once see that
a -+ b = ¢, so the sum effectively runs over a single index. Owing to the

L7 Coupling 11

unitarity of Eq. (1.28), we have
3 (Cc| Aa, Bb) (Aa, Bb| C'c') = é(c, ')&(C, C'), {1.29)

a.b

Y. (Aa, Bb| Cc)(Cc| Ad’, BY') = i(a, a')d(b, V). (1.30)

It would be out of place in this introduction to go deeply into the prop-
erties of the CG coefficients, Nowadays they are often replaced by the
3-7 symbol [8], which is defined by

(:: f f) = (—1)4-#—<(2C + 1)~"*(Aa, Bb|C —¢). (1.31)
The 3-f symbol exhibits the symmetries of the CG coefficient in & partic-
ularly transparent form. Even permutations of the columns leave the
numerical value of the symbol unchanged, while odd permutations of the
columns or a reversal in sign of the entries of the lower row produce a
phase factor (—1)4+3+C, Qver the years, many tabulations of the CG
coefficients and 3-j symbols have been made. The numerical tables of
Rotenberg el al. [9] are some of the most extensive. Edmonds [17] gives
the algebraic forms of a number of the more simple 3-j symbols. Several
of these are assembled in Appendix I. A method for finding an explicit
expression for the general CG coeflicient is outlined in Problem 1.3.

To indicate that A and B are coupled to C, the ket | Cc) is often more
completely written as | (AB)Ce). The arrangement of symbols is of some
significance, since the explicit form for the CG coefficient appearing in
Eq. (1.28) permits the interchange Aa < Bb only when the phase
(=1)4+5-C ig included. So

| (AB)Cc) = (—1)4+8-C | (BA)Cc). (1.32)
Tensor operators, like kets, can be coupled. Thus wa may write
(TWT®),©@ = T (Aa, Bb | Cc) TLA U, (1.33)
ab

It is traditional [7] to define a sealar product by the equation
(T . T@W) = 3 (=1)sT MU_ 4,

From Edmonds’ text, we at once find that
(Aa, A —a | 00) = (—1)~4+3(24 4 1)1, (1.34)
so that
(TW.TW) = (=1)4(24 + 1)(TTU) O (1.35)
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M

d I
(3) dix [sin’ X (d — ) Cnr(cos x}]
d i
= cot x [l sin? x ( Joon x) Caafcos x)]

41
— gin*+ ( 3 ci x) Chnr(co8 x),

. d
(4 (1= 8 S Can) = (2 D 5 Cot)

-1

d
= —(ﬂ’—l’)t'h‘T;

Cn-l(“)-
Assemble these results to prove Eq. (2.25).
2.4 By multiplying both sides of the equation

Ci(w)Ce(n) = XL A('8)C.(k) (s = cosx)

by C.(cos x) sin? x dx and integrating over x, prove that the coefficient
of k'g¥f*in

[0 = = 2 )L = 2+ )7L 2+ 1)

is Jra(it's). Show that this is equal to the coefficient of hig*'f* in
Ix{(1 —gh)(1 — B (1 — )17

and deduce that A(i's) = 1if ¢, ¢, and & snt.isfy the' triangular condition
and if, in addition, ¢ + ¢' + s is even: otherwise Ait's) = 0.

2.5 Derive Eq. (2.40) from the requirement that Ca-(cos x), bei;llg a
ft;nction of an angle between two radii vectora r, and 1, of the hypersphere,
is a scalar under rotations generated by (Jas)1 + (Jas)a

R(4) in Physical Systems

3.1 THE RIGID ROTATOR

The notion of & rigid rotator is an abstraction. Its gsignificance for us
lies in the fact that, when treating the motion of a physical object in
quantum mechanics, we usually separate out the coordinates o that refer
specifically to the orientation of the object from those that represent
internal motion. The resulting differential equation satisfied by the Euler
angles’ w is identical to that occurring in the quantum treatment of &
classical rigid rotator, For this reason, the properties of this rather artificial
object are relevant to us. Casimir [20] and van Winter [31] have given
more complete treatments than the sketch presented here.

The rigid rotator is visualized as an object possessing three principal
moments of inertia, Iy, I, and I,. It is convenient to fix a frame F in the
rotator so that the ¢ 4, and { axes coincide with the principal axes. A
point (£n) embedded in the rotator can be assigned coordinates (zyz)
in a laboratory-fixed frame F. The connection with the Euler angles
w (= afy) is specified by Eqs. ( 1.10). The classical kinetic energy T of

45
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the rotator is given by
T = Y LHed + Lot + Twi?), (3.1)

where w, is the angular velocity of the o.bject, al:fout. p{'m;:lpal ul: (:f t’]}.:g
relate this to &, 8, and ¥, we consider an infinitesimal disp acemen‘l dhe
rotator. Since the frame F' is carried with the rotator, we are en.mn 3{(1 o
to find dr, dy, and dz in terms of da., dg, and dy by taking E,I?, lnowcver

be constant and differentiating the inverses of Eqs.. (1.10). ﬁ, :1 over é
frame ' had not moved with the rotatfor, the point (£nf) lxe g

rotator would have been assigned coordlpates gs + dt, n + 1; ?, g'b L t-,
and the increments df, dg, and d can be immediately found by subs

ing dx for r, ete., in Eqgs. (1.10). We get

e u) = fsiny — &sinfcosy,
“’“(n=+r1 =0

B (E'i = nE)
& g+ f=0
i ; ical perception could no doubt
ders with a well-developed geometrica 2ption.
Erre?te d;wn these expressions for w; without any preliminaries, as do Landau

and Lifshitz [32]. The generalized momenta are defined by

f cos v + & sin 8 sin v,

[l

acos B+ 7.

pa = 8T/3& = —Iw sin 8 cos ¥y + Jawmn sin Bsin v + Jws cos 8,
ps = 8T/88 = L siny + L cosy,
Py = BT/a‘f = Jyws,

We now make the replacements p, = —ifia}qa, cte., and, l::.ff.er having
done this, express Iw, as sums of these derivatives. The result is

Ly = —Ain, Loy = —Hik,, Ty = =i, (3.2)

where \ is given by Eqgs. (1.23). The quantum-mechanical Hamiltonian
for the rigid rotator is thus

(M M E) (3.3)
T=§f"(ﬁ A

Of course, we could have appealed to classi.cal mecha._ni(_zs .for E(é; (1;31‘2-

instead of Eq. (3.1). However, the intervening analysis ia importan

establishing the negative signs in Eqs. (3.2).

3.1 The Rigid Rolator -

To assign quantum numbers to the eigenfunctions of T, we seek oper-
ators that commute with it. Now, we have already determined that !,
defined in Eqs. (1.22), commutes with every component of \. Hence the
eigenvalues J(J + 1) and M of the two mutually commuting operators
P and I, can be used to label the eigenfunctions. Of course, I = A2, and
the two quantum numbers J and Af correspond to the total angular mo-
mentum of the rigid rotator and its z projection in the laboratory frame.
The eigenfunction ¢ can only depend on the Euler angles w, since these
are the only dynamical variables appearing in the Hamiltonian. As
Dyn’ (w)* is an eigenfunction of  and l,, it is highly econvenient to expand
¥(w) in terms of the D functions. This is possible because the D functions
(like the spherical harmonics Yaim) form & complete set. Thus the eigen-
function corresponding to a specified J and M takes the form

Vlw) = 3] anDyn (w)* (3.4)
N

for the rigid rotator.
The coefficients ay in Eq. (3.4) depend on the moments of inertin, I;

If two of these (say I) and 7.) are equal, the rigid rotator is ealled 1 sym-
melric top. For this special case, we can write

1,11 1 1
r-ufhe (- D)

and this expression for T commutes with Ar as well as with P and ,. From
Section 1.6, we know Dy’ (w)* is an eigenfunction of A with eigenvalue

—N, so0 a single D function is an eigenfunction of the symmetrio top. We
impose a normalization condition and write

V(@) = [(27 + 1)/8x3) 12D 47 () * (3.5)
Sinee Ty = —#X;, the angular momentum of the symmetric top about
the symmetry axis ¢ is #N for the eigenfunction of Eq. (3.5). The eigen-
values of T are
1 [J(+1) (1 1) ]
| —_— L —_—— — 2
g [LLED Lo, (3.0)

and we must necessarily have J > | N |. Unless I; = I (= L), in which
case the symmetric top reduces to a spherical rotator, each energy level
for which | ¥ | > 0 possesses a degeneracy of 2(2J + 1). The levels of &
spherical rotator exhibit a degeneracy of (27 4 1) Needless to say, any

linear combination of the solutions (3.5) that correspond to the same
energy is itself a solution.
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Although the eigenfunctions ¢(w) of Eq. (3.5) form basis functions for
an irreducible representation of R(4) if we let M and N run between their
limits of —J and J, they correspond to a single energy level only for the
spherical rotator. This is because the operators A and A, do not commute
with the Hamiltonian of the symmetric top. The group R(4) is said to be
a noninvariance group for this system.

3.2 REVERSED ANGULAR MOMENTUM

To convert ¢(w) of Eq. (3.5) to the form of a ket, we write
W(w) = [ + 1)/88)1Dyy’ (w)* = (—1)~V|J, M, —=N). (3.7)

The reason for the phase factor (—1)’~" and the minus sign preceding N
in the ket is precisely the same as the reason for their appearance in Eq.
(1.27). Both quantum numbers A/ and —N are on a gimilar footing with
respect to ! and \. Thus M and —N specily the eigenvalues of I, and Ay,
and the properties of the shift operators I & 1, and X =k i\, are also
matched.

The presence of —N rather than N in the ket may seem distasteful.
As has just been pointed out in the previous section, the angular momen-
tum of the symmetric top about the symmetry axis is fiN, and not —AN.
It might therefore seem more natural to write |J, MN) for ¢(w) and to
introduce the vector X' = — X, 5o that N now appears as the eigenvalue
of A/. Unfortunately, these modest adjustments entail another change.
Unlike X\, the vector A’ is not an angular momentum vector, since it
satisfies the ecommutation relations

A AT = —in, (3.8)

etc., in which —i appears on the right-hand side instead of i. However,
this is not entirely satisfactory, since A’ represents, in one sense, an angular
momentum: it is, in fact, the total angular momentum 1 of the rigid rotator
projected onto axes coinciding instantaneously with those of the frame F’
fixed in the rotator. To see this, we write ! = 199 in the double-tensor
notation of Section 1.7. To project I onto the axes of F', we have merely
to construct (DUVIIM) @), Using Egs. (1.22)-(1.23), we find

A = (Dongaeryon, (3.9)
(An alternative method to the direct approach for obtaining this result
is outlined in Problem 3.2.) Van Vleck [33] realized that matters could

be arranged to make it permissible to take Eq. (3.8) as the standard form
for the commutation relations for the components of an angular momentum

3.3 Reduced Malriz Elements s

vector. The sign of 7 can have no significance in quantum mechanics: on
merfaly has to 'Pe consistent. However, if we accept Eq. (3.8) a.n;i itz
cyclic permutations as defining an angular momentum vector, a normal
angular momentum vector P satisfies anomalous commutatioxi relationa

¥ & H € gll

) X P=_p, (3.10)
and now the components of P satisf i i
¥y commutation relations of the

(3".31)1. The kets | P., Mp)are to be used, in which #» is the eigenvalue ofyf?;e

e change of sign of an angular momentum vector corresponds to timt;
;eversl?l._Thfs can be seen to be associated with the replacement { — —i
F:-r sL(xl stituting —p fur: pin .the fundamental commutation relations (1.1)

eed [34] has described in detail the procedures to follow when t.hq;

m‘ja[tth?d of reversed angular momentum is adopted

18 not necessary to take Van Vleck's extrerr; iti i

. e position, Carrin

et al. [35] have pointed out that the commutation relations (3.8) cngt g:

corrected by setting
Mo M A = -\, N = A
for then )" satisfies the commutati .
ation relati :
momentum vector. ons of an ordinary angular

Alternatively, all these adjustments ean b i
ly, e avoided by accepting Eg.
(3.7), and this is the course we shall follow here. The price w: pag iaqa.

certain asymmetry between the frames F and F* i
tensors are referred (see Problem 3.2). to which ocur double

3.3 REDUCED MATRIX ELEMENTS

An important matrix element for eigenstates of the rigid rotator is
(JMN | Dy | J'M'N'), (3.11)

The notation of Eq. (3.7) is followed in bra and ket. (Thus & is the eigen-

value of X.) From this equation and from E .
(3.11) is equal to m Eq. (1.27), the matrix element

1
— )TN HI N e
(-1) '[J: k, J']H’@ f ﬂ)y_x"(w)ﬁp_c"(w) ‘Dy!_}v""(w)‘ dw,
The integral can be readily evaluated from Egs. (1.14) and (1.45).

On the.other hand, the _WE theorem can be applied to the matrix element
(3.11). Since we are dealing with a double tensor, two 3-j symbols appear



