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derived from Hamilton's principle if Egs.
(49) and (50) are first used to rewrite Eq.
(51) in the form

s=jwm-mew. (65)

With fixed end points ¢, and 1,, independent
variations 8p; and &g, then induce the varia-

tion
6p )d

55 = f nw+%@J+—m,

= Ih&iil + Lﬁ (_Pi&h + qiop;

aH

- ;.)qul ap;

6p,)dt (66)
The integrated term vanishes by assumption.
Equating to zero the coefficients of dp; and
&; then yields the set of equations

oH oH
g O g O 7
b= P v (67)

which are Hamilton's equations of motion.
Thus, both Lagrangian and Hamiltonian me-
chanics are implied by Hamilton’s principle,
provided that the variations 8p; and &g; can
be regarded as independent. The latter as-
sumption is important because it underlies
the entire approach of Hamiltonian mechan-
ics. It is justified by the fact that the Hamil-
tonian form can be obtained by a direct
transformation of variables from the Lagran-
gian form.

2.3.3 Canonical Transformations
Transformations of the type (33) are called
point transformations because they involve
only the coordinates g;. An advantage of
Hamiltonian mechanics is that, with the ¢'s
and p’s regarded as independent variables,
more general types of transformation can be
constructed that map the set {g,p] to a new
set {Q,P] defined by connection equations of
the form

Q; = Qilg.p.t), P; = Pdq.p.h). (68)
Such a contact transformation is said to be
canonical if the form of Hamilton’s equations
is left invariant; i.e., there exists a trans-

formed Hamiltonian function K(Q,P,t) such
that

0=2 p=-2 (69)

are the correct equations of motion for the
transformed variables. This will be true if
both sets of coordinates and momenta satisfy
their respective variational principles

5 f Lodi— BlgpDidt= 0, (70)

3 f [P.O; — K(Q,P,1)ldt = 0. (71)

The integrands need not be equal, but they
can differ by at most the total time deriva-
tive of a function F, called the generating
function for the transformation. We can thus
write

p4; — H(gpt) = A|P,Q; — K(QPt) + —

dF]
dt

(72)

Values of the constant A # 1 just correspond
to a scale transformation, and so without
loss of generality, we can take A = 1. With
the choice F = F,(q,Q,t), the set (q,Q] is re-
garded as the 2N separately independent
variables, and the quantity dF/dt in Eq. (72)
can be replaced by

dF, _ oF, g+ oF,
e ? aQ,- Q + at (73)
Equating to zero the coefficients of ¢; and Q;
then yields

aF, dF,
= P/' — it 74
5 oq; a0Q; 74)
k=n+3, (75)
ot

For example, the choice F; = q,Q; inter-
changes the roles of the ¢'s and p’s (except
for a sign change), with the result

=Q, P,=-q, K=H (76)

This demonstrates explicitly that the ¢’s and



p’s stand on an equal footing as independent
variables in Hamiltonian mechanics—their
roles can be interchanged by a canonical
transformation.

Other choices for the 2N independent
variables can be achieved by application of
one or more Legendre transformations (as is
done in thermodynamics to change indepen-
dent variables). Of particular relevance to the
Hamilton-Jacobi equation is the choice (g,P].
One need merely replace F,(q,Q) by F,(q,P)
= F, + Q;P;. Then Eq. (72) becomes

dF
p4i; — Hgpt) = —QP; — K(QPy) + d_tz'
(77)

with
dF, _oF,  oF, oF,
R A R 78)
and so

_ 9 _9F,
P, = aq; ' Q; ap, ' (79)

- 9F;
K=H+ " (80)

For example, the choice F, = g;P; generates
the identity transformation with Q; = g; and
P; = p:

2.3.4 Interpretation of the Hamilton-
Jacobi Equation A comparison of Eq. (80)
with Eq. (54) shows that the Hamilton-Ja-
cobi equation can be regarded as a canonical
transformation with F, = S(g,P,t) such that
the transformed Hamiltonian is K = 0. The
transformed equations of motion are then

oK oK
3P, =:10Q;=0, Q. P, = 0. (81)
Thus the transformed momenta P; = «; and
the transformed coordinates Q; = p; are all
constants of the motion. The nature of the
solution is now clear. Writing S = S(q,a,t),
then the set of equations

aS(q,at a8(g,a,1)
gy 22md), g 0SlG0))

- - (82)
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evaluated at t+ = 1, provides a set of 2N
equations to determine 2N unknowns «; and
B: in terms of the initial (¢;), and (p;),. For
conservative systems, the remaining (N +
1)th constant of integration is the energy E
of the system. For this case, the time vari-
able is separable, and S can be written in the
form

S(g,a,t) = W(g,a) — Et, (83)

where W(g,a) is called Hamilton's character-
istic function. The crucial point is that any
complete integral to the Hamilton-Jacobi
equation generates a possible dynamical mo-
tion of the system since it is the generating
function for a canonical transformation. This
result is called Jacobi's theorem.

As a consequence of Jacobi’s theorem, any
complete integral S contains within it all
possible trajectories of the system as a func-
tion of the initial conditions, rather than one
particular trajectory. In fact, surfaces of con-
stant S move through configuration space
like wave fronts of constant phase such that
the particle trajectories follow the orthogonal
set of curves. To see this, consider the ex-
ample of a particle moving in a potential V,
expressed in Cartesian coordinates. Equa-
tions (53) for (g,,92,9:) = (x,y,z) can then be
written as the single equation

VS = VW = p, (84)

which shows that the momentum p = mv is
everywhere perpendicular to surfaces of con-
stant W, and the particle velocity is v =
[VWI/m. The Hamilton-Jacobi equation for W
in this case is

(12m)(VW)? + V = E, (85)
so that
IVWI = 2m(E — V). (86)

For the case of a freely falling particle, sur-
faces of constant W are just horizontal
planes with the particle trajectories in the
perpendicular direction. As time goes on,
surfaces of constant S sweep through sur-
faces of constant W with a phase velocity
given by
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ds E

-2 - (87)

u

where ds is a displacement in the direction
normal to a surface of constant W. The
above follows from the facts that the station-
ary phase condition dS = 0 corresponds to
dW = Edt, and dW = |IVWIds is the change
in W due to a displacement in the direction
normal to the surface. Thus the phase veloc-
ity decreases as the particle velocity in-
creases, just as is the case for the wave and
particle pictures of light.

The above considerations in fact provide a
wave picture of classical dynamics in the
“geometrical optics” limit where the wave-
length is infinitesimally small compared with
the dimensions of the apparatus. The wave
nature can then be ignored, and the trajec-
tories determined by the principle of least
action (or Fermat's principle in the case of
geometrical optics).

2.4 Relativistic Generalization

For the case of a single particle acted on
by forces derivable from a potential V, Ham-
ilton’s principle can be simply modified to
incorporate the effects of special relativity.
One need simply define

L= —mc*y -V, (88)

where y = /1 = v?%c?, and v is the velocity
[¥l in a particularly chosen Lorentz frame.
With this choice of L, Hamilton’s principle
and the Euler-Lagrange equations give the
correct equations of motion

d (mi\ vV
E(T) T T 83

The canonical momenta p; and Hamiltonian
H are given by

oL mx;
pi_f'_«ff_T' (90)
Hom piyie L =T % Vi B (91)

where T = mc?/y is a relativistic generaliza-
tion of the kinetic energy, including the rest-
mass energy mc?. After substituting for x;, H
assumes the form

H = [c’p? + m*c* + V. (92)

2.4.1 Inclusion of Electromagnetic
Fields In general, an electromagnetic field
is derivable from a scalar potential ¢(r,t) and
a vector potential A(r,7) according to

E

=¥y (93)
c it

B

V X A, (94)

where E and B are the electric and magnetic
fields. The equation of motion for a particle
of charge g is then

i(&x")— E +%wxB) (95)
df v qLr; ¢ i

which now contains a velocity-dependent
force term. This equation follows from the
Lagrangian

L= —mc*y —qd + gA-v, (96)

or its nonrelativistic counterpart with the
term —mc?y replaced by T. The canonical
momenta are then

A;. (97)

A direct calculation shows that the Hamilto-
nian becomes [cf. Eq. (92)]

H = /c’[p — (qlc)AP + m?c* + V. (98)

The same substitution p = p — (g/c)A ap-
plies also in the nonrelativistic case. This
simple prescription, together with V = ga,
allows electromagnetic fields to be easily in-
corporated into the Lagrangian and Hamil-
tonian formulations of mechanics.

3. APPLICATIONS TO QUANTUM
MECHANICS

3.1 Variational Derivation of the
Schrodinger Equation

The considerations of Sec. 2.3.4 suggest
that the Hamilton-Jacobi equation of classi-
cal dynamics expresses the short-wavelength



limit of an underlying wave equation, with
surfaces of constant S identified as surfaces
of constant phase. In fact, Eq. (85) already
bears a superficial resemblance to the time-
independent Schrédinger equation, but it
does not yet have the form of a wave equa-
tion. Following Schrédinger, a suitable wave
equation can be obtained by first making the
substitution

W=iCln¥= ¥ =,W° (99)
into the Hamilton-Jacobi equation

(12m)(VW*-VW) + V = E, (100)

generalized for complex W, to obtain

(C*2m)(VW*-VW¥) + (V — E)¥*¥ = 0.
(101)

The left-hand side can be integrated over all
space, provided that [¥*Wd’r remains finite.
Application of the Euler-Lagrange equations
to make the integral stationary with respect
to arbitrary independent variations of ¥ and
¥* then yields the Schrédinger equation
—(C2m)(V*¥) + (V — E)¥ = 0, (102)
together with a similar equation for ¥*. The
derivation is a simple extension of the one
used to obtain Laplace’s equation (31) in
Sec. 1.2. The solution to Eq. (102) then de-
termines the wave function ¥(r) for the sys-
tem, subject to the constraint that [¥*W¥d’
remain finite for bound systems; i.e., that ¥
is normalizable. Comparison with experiment
shows that one should set C = & = h/2m,
where % is Planck’s constant. Equation (102)
can then be written in the form
Hgp)¥ = EY, (103)
where H(g,p) is the Hamiltonian with the
quantum-mechanical replacement p — (/i)V.
The constraint on [¥*Wd>r makes this an ei-
genvalue problem that determines the possi-
ble energies E of the system.

If there are n interacting particles, then
the term V2¥ is to be replaced by £,V7 ¥, and
V includes all the interaction potentials. Also,
the various integrals over dr are replaced by
multiple integrals over d*rd°r; -+ d°r,,.
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3.2 The Rayleigh-Schrédinger Variational
Principle

Consider a bound system, or one that is
contained in a finite box. Under these condi-
tions, Eq. (101) can be integrated over all
space and the term V¥*-VV¥ integrated by
parts to obtain

J W(H — E)Wdr = 0. (104)
The integrated term does not contribute un-
der the assumed conditions because ¥(r) = 0
sufficiently rapidly as Irl = %. The variational
derivation of Sec. 3.1 guarantees that this in-
tegral is stationary with respect to arbitrary
variations 8V if ¥ satisfies the Schrédinger
equation. However, the same variational con-
dition can now be reinterpreted as the prob-
lem of making the integral [WV*HWd’r sta-
tionary, subject to the constraint that

J V*Wd3r = const., (105)

with E playing the role of a Lagrange unde-
termined multiplier. In this guise, one can
say that E obtained from the Rayleigh quo-
tient

I v HWd>r
E = (106)

J Ty

is stationary. In fact, as discussed in the fol-
lowing section, E is a minimum under many
circumstances.

3.3 The Rayleigh-Ritz Variational Method

The Schrodinger equation is a partial-dif-
ferential equation that can be solved exactly
only for certain special cases such as the
Coulomb potential or the harmonic-oscillator
potential. For arbitrary potentials, or for
problems containing more than two bodies,
the quantum-mechanical problem is no eas-
ier to solve than the corresponding classical
one. In these cases, the Rayleigh-Schro-
dinger variational principle provides one of
the most powerful methods for obtaining
approximate eigenvalues E and wave func-
tions V.
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Suppose one guesses by some means an
approximate trial wave function ¥, that con-
forms with the constraint of normalizability
and approximates one of the exact solutions
to
HY, =EW, i=12,.... (107)
The index i labels the spectrum of exact so-
lutions. In general, the eigenvalue spectrum
will have both discrete and continuous parts.
In the latter case, summations over i include
integrations over the continuous part. The
crucial point is that even though the ¥; are
not known, they form a complete basis set of
functions in terms of which the trial func-
tion ¥, can be expanded. In analogy with
Fourier series, one can therefore write

V.= 3 ¥,

i=1

(108)

where the ¢; are the expansion coefficients.
Let the eigenvalue spectrum be ordered so
that E, < E, < E; < ---, and assume that all
the ¥, and ¥, are normalized to unity; i.e.,
using Dirac bra-ket notation for integrals,

(W, HIW,) =
(1) = &

V*HWYd = E,,

(109)

Substituting Eq. (108) into (106), and using
Egs. (109), one then obtains
E". = |C]'2E| + 'CZIZEZ + |C3|2E3 i A (110)

for the corresponding trial energy. Since, by
assumption, (¥, |%,) = 1, it follows that

> lei? =1,

i=1

(111)

and so Eq. (110) can be rewritten in the
form

E" = El 1 ICZIZ(EZ == E])
+ lesP(E; — E) + -+
=E,. (112)

Thus E,, is an upper bound on the lowest ei-
genvalue E, for any normalizable ¥,,.

The basic idea of variational calculations
then is to write ¥, in some arbitrarily cho-
sen mathematical form with variational pa-
rameters (subject to normalizability and
boundary conditions at the origin and infin-
ity), and then adjust the parameters to ob-
tain the minimum value of E,,. A lower E,, is
guaranteed to be closer to E,. The power of
the method stems both from this and the
fact that, by the Rayleigh-Schrédinger varia-
tional principle, the error term linear in ¥
= ¥, — W, vanishes.

3.3.1 Algebraic Solution for Linear Var-
iational Parameters Suppose that ¥, de-
pends in some arbitrarily chosen way on a
set of N variational parameters a,, a,, ...,
ay. [For example, in a one-dimensional case,
one might choose ¥(r) = re " with a, and
a, regarded as nonlinear variational parame-
ters.] Then the variational condition corre-
sponds to the system of equations

ﬂ=0, pu= L s

da,,

(113)

In general, this is a set of transcendental al-
gebraic equations that cannot be solved ex-
actly.

However, the minimization problem for
the case of linear variational coefficients can
be solved exactly by matrix diagonalization.
For example, let (y,lp = 1,..., N} be a fi-
nite basis set of N arbitrarily chosen func-
tions (subject to the boundary conditions
and normalizability) that need have nothing
to do with the exact ¥, and write ¥, in the
form

”
= A, (114)

p=1

Now the variational parameters a, enter lin-
early, and the set of variational conditions
(113) becomes exactly equivalent to the N-di-
mensional generalized eigenvalue problem
Ha = AOa, (115)
where a is a column vector of coefficients a
and H and O have matrix elements H,, =
(x|Hlx,) and O,, = (x,lx,). There are N ei-
genvalues Ay, A, ..., Ay, of which the lowest
is an upper bound to E,.

4



Equation (115) is equivalent to the origi-
nal Schrodinger equation (103) only if the
basis set [x,]) is complete, and in general this
requires taking the limit N — =. The signifi-
cance of Eq. (115) is that it provides a com-
putationally useful means of obtaining ap-
proximate solutions, even if the complete
basis set of functions {y,] is truncated at
some finite number N, and the lowest eigen-
value provides an upper bound that system-
atically decreases toward the exact E, as N is
increased. As discussed in the following sec-
tion, the bounds apply not just to the ground
state but also to the lower-lying excited
states.

3.3.2 Extension to Excited States By
the Hylleraas-Undheim-MacDonald (HUM)
theorem (see Hylleraas and Undheim, 1930;
MacDonald, 1933), the remaining eigenval-
ues A, A, ... are also upper bounds to the
exact energies E,, E;, ..., provided that the
spectrum is bounded from below. The HUM
theorem is a consequence of the matrix ei-
genvalue interleaving theorem, which states
that as the dimensions of H and O are pro-
gressively increased by adding an extra row
and column, the N old eigenvalues A, fall be-
tween the N + 1 new ones. Consequently, as
illustrated in Fig. 3, all eigenvalues num-
bered from the bottom up must move inexo-
rably downward as N is increased. Since the

E“/////// ///AC,ZL*;/77_7

E; A
E, S
Ar—--.._
E, -
A—-.
El 1 e Il 1
1 2 3 4 5
N
FIG. 3. Diagram illustrating the HUM theorem. The
Ap P = Niieon N, are the variational eigenvalues for

an N-dimensional basis set, and the E; are the exact
eigenvalues of H. The highest A, lie in the continu-
ous spectrum of H.
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exact spectrum of bound states is obtained
in the limit N = %, no A, can cross the cor-
responding exact E, on its way down. Thus
A, = E, for every finite N.

If the exact ¥; can be formed from a lin-
ear combination of the y, included in the fi-
nite basis set, then the result of the varia-
tional calculation is the exact ¥ and E,.
Otherwise, one obtains the best variational
approximation provided by the particular y,
chosen. If the y, basis set becomes asymptot-
ically complete as p — =, then convergence
to the correct answer is assured.

The HUM theorem no longer applies di-
rectly to the relativistic Dirac equation or
similar problems because the spectrum is
not bounded from below. However, finite ba-
sis-set methods can still be applied, provided
that sufficient care is taken in their construc-
tion (see Drake and Goldman, 1988; Grant,
1996).

3.3.3 Variational Lower Bound If the
Rayleigh-Ritz method is applied to the inte-
gral

J v*(H — E)(H — E3)d’r, (116)

then the quantity

e (W JHH — E3)I¥,)
T (YJH - E3)¥,)

(117)

is made stationary. If the quantity E; is cho-
sen to be a lower bound on the energy E; of
the first excited state, then by an argument
similar to that leading to Eq. (112), E™ is a
lower bound on the ground-state energy E;,
called the Temple lower bound (Temple,
1928) and denoted by Ey. In fact, if ¥, is ex-
panded as in Eg. (108), then after some al-
gebra, E< from Eq. (117) becomes

> le)ME; — E\)E; — E3)
i=2
E,-E; +D

E|< = E| +
(118)

where

D = Y lc(E; - E)) = Ey — Ey, (119)

i=2
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and E; is the variational upper bound on E,.
The numerator of the fraction in Eq. (118) is
positive and the denominator is negative,
provided that E; < E5, thus proving the
bound. However, generally speaking, Ej is
much less accurate than E7.

3.3.4 Illustrative Results for Helium
Application of the variational method to he-
lium by Hylleraas (1928, 1929) played an im-
portant role in the early history of quantum
mechanics because it provided the first test
of the Schrédinger equation in a system
more complicated than hydrogen. With its
two electrons orbiting the nucleus, helium is
the simplest atomic system that cannot be
adequately described by the older Bohr-
Sommerfeld quantum theory.

The Hamiltonian for helium (in the limit
of infinite nuclear mass) is

2k, e e?
H:—Z( Vi —|+—, (120)
i=1

2m..

where r\, = Ir; — r,l is the electron—electron
separation and Ze is the nuclear charge. The
e’/ry, term represents the Coulomb repulsion
between the two electrons. Without this
term, the Schrédinger equation would be
separable, and the exact solution (including
permutational symmetry) would be of the
form
V(r,r;) = dh(r)ds(r;) = gi(r)ds(r),  (121)
where (r) and ys(r) are exactly known hy-
drogenic wave functions, depending on the
state in question. The Hartree-Fock approxi-
mation corresponds to the best variational
representation that can be written in the
form of a separable product with ¢,(r) and
Ur(r) regarded as arbitrary functions of r.
However, even this is in error for the
ground-state energy of —2.903 724 a.u. [the
atomic unit (a.u.) of energy is e’a, =
27.211 396 eV, where a, is the Bohr radius]
by 0.0247 a.u., or 0.673 eV. This difference,
called the correlation energy, is much larger
than typical chemical energies.

To obtain a better representation, Hylle-
raas suggested constructing a trial solution
of the form

Ve = 2 aiik'jl'jz’#z exp(—ar; — Bry), (122)
ik

which is of the form of a hydrogenic product
Un(r))yn(r;), except that it contains explicit
powers of r, and is therefore not separable.
The a;j, are the linear variational parameters,
and a and B are additional nonlinear param-
eters that can be separately varied to opti-
mize the energy. Detailed formulas for the
necessary matrix elements are given by
Drake (1996). This basis set is provably com-
plete in the limit of large i,,.¢, jimax and k.«
(Klahn and Bingel, 1977). Typically, all com-
binations of powers are included in the basis
set such that, for electrons with angular mo-
menta /;, and /,,
i+j+k-1L -L=49 (123)
where £ is an integer that is progressively
increased until adequate convergence is ob-
tained. Without further truncation, the num-
ber of terms obtained in this way is
N = {2 + 1)(Q + 2)(Q + 3). (124)
The effect of including powers of ry, is
dramatic and immediate. The Hartree-Fock
approximation corresponds to the limit of
large i, and j. With k.« = 0. As shown
in Table 1, an increase of k... to 1 reduces
the error in E to only 0.006 20 eV, thereby
accounting for 99% of the correlation en-
ergy. The results in Table 1 also demonstrate
that the odd powers of r,, are much more ef-
fective than the even powers. This can be un-
derstood from the fact that 73, can be writ-
ten in the form
=1+ r3 — 2nr; cosb,,, (125)
where 6,, is the angle between the vectors r,
and r,. Thus 7, is only linear in cosé,,,
while an expansion of r;, = (r},)"? contains
all powers of cosé,,.

Table 1. Energies for the ground state of helium
obtained with various powers of r,, in the basis
set.

1> Terms Energy (a.u.) Error (eV)
No ry, -2.879 029 0.672

s —2.900 503 0.087 6
i, -2.902 752 0.026 4

ria ~2.903 496 0.006 20
iz Fas —2.903 700 0.000 65
All 7, -2.903 724 0.000 00




Calculations of this type have been per-
formed by many authors (see Drake, 1993a,
for a review), and they have reached a high
degree of sophistication. Problems typical of
all variational calculations are a dramatic
and progressive loss of accuracy for the
more highly excited states, and numerical
linear dependence in the basis set as it is en-
larged. These problems can be avoided by
doubling the basis set so that it contains a
second set of terms with the same powers
but different scale factors @ and B. A com-
plete optimization with respect to the a’s and
B's then leads to a natural partition of the
basis set into two sectors with one represent-
ing the asymptotic form of the wave function
and the other representing complex inner
correlation effects. The results obtained by
this method are essentially exact for all prac-
tical purposes. The nonrelativistic energies
are known to better than one part in 10'® for
the entire singly excited spectrum. A sample
of results for the low-lying states is given in
Table 2. The indicated convergence was ob-
tained by progressively increasing {2 up to
17, corresponding to about 1700 terms in the
doubled basis set. Table 3 shows an example
of the convergence for the ground state. [For
the case of S states, the basis-set sizes are
smaller than indicated by Eq. (124) because
terms with i > j can be omitted by symme-
try.] The ratios of successive differences in
the last column provide a convenient method
to monitor the convergence of the eigen-
value. They show that the differences them-
selves decrease in a fairly smooth and uni-
form fashion with increasing (2. These
high-precision results provide a benchmark
for comparison with other less accurate

Table 2. Nonrelativistic energies for several states
of helium in the limit of infinite nuclear mass.

State Energy (a.u.)

1s2'S —2.903 724 377 034 119 60(2)
1s2s 'S —2.145 974 046 054 419(2)
1525 3S —2.175 229 378 236 791 307(6)
1s2p 'P —2.123 843 086 498 101 35(5)
1s2p 3P —2.133 164 190 779 283 17(3)
1s3s 'S —2.061 271989 740 911(5)
1s3s3S —2.068 689 067 472 457 192(1)
1s3p 'P —2.055 146 362 091 943 33(7)
1s3p °P —2.058 081 084 274 275 3(2)
1s3d 'D —2.055 620 732 852 246 51(8)
1s3d 3D —2.055 636 309 453 261 34(4)
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Table 3. Convergence study for the ground-state
energy of helium (in atomic units). The numbers
in the last column give the ratios of successive
differences.

2 Nu() E@) R(0)*

4 44 ~2.903 724 131 001 531 810

5 67 —2.903 724 351 566 477 006

6 98 —2.903 724 373 891 109 909 9.88

7 135 —2.903 724 376 548 959 510 8.40

8 182 —2.903 724 376 960 412 587 6.46

9 236 ~2.903 724 377 018 168 462 7.12
10 302 —2.903 724 377 030 786 217 4.58
11 376 —2.903 724 377 033 426 037 4.78
12 464 ~2.903 724 377 033 966 492 4.88
13 561 —2.903 724 377 034 076 500 491
14 674 ~2.903 724 377 034 107 875 3.51
15 797 ~2.903 724 377 034 116 019 3.85
16 938 —2.903 724 377 034 118 518 3.26
17 1090 ~2.903 724 377 034 119 239 347
18 1262 ~2.903 724 377 034 119 479 3.01

Extrapolation ~ —2.903 724 377 034 119 597(15)

“R(N) = [E(02 - 1) — E(Q - 2)E() - EQ2 - 1]

methods of calculation such as Hartree-Fock
and configuration interaction. Results for
many other states are given by Drake (1993b,
1994).

A comparison of the results in Table 2
with experiment is meaningful only after
corrections for finite nuclear mass, special
relativity, and  quantum-electrodynamic
(QED) effects (such as electron self-energy
and vacuum polarization) are taken into ac-
count. A detailed discussion of these correc-
tions can be found in Drake (1993b, 1994).
When they are included, the calculated tran-
sition frequencies agree to within the esti-
mated accuracy of the QED shift. If the mea-
surements are expressed in terms of
ionization energies for the various states,
then their accuracies range from =30 MHz
(£5 x 1077 a.u.) for the ground state to
+0.1 MHz (=15 x 107" au.) for the
higher-lying P and D states. Since the non-
relativistic energies in Table 2 are much
more accurate than this, the comparison
with experiment is primarily a test of higher-
order contributions to the QED shift (two-
electron Lamb shift), which is the dominant
source of uncertainty in the calculations.

As one example, the calculated ionization
energy of the 1s2s'S state is (Drake et al,
1993)

960 332 039.4 = 1 MHz.

Of this total, —2808.5 + 1 MHz comes from
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the calculated QED shift. For comparison,
the two experimental values are

960 332 041.52 + 0.21 MHz,
960 332 040.87 + 0.15 MHz.

The first is obtained from an extrapolation of
the 1s2s 'S-1snp 'P transition frequencies to
the series limit (Sansonetti and Gillaspy,
1992), and the second from the 1s2s'S-
Isnd 'D two-photon transition frequencies
(Lichten et al., 1991). Although the measure-
ments do not quite agree with each other,
taken together they determine the QED shift
of the 1s2s 'S state to an accuracy of about
100 parts per million and verify the calcu-
lated value to better than 0.1%. For the
ground state, the calculated QED shift in the
ionization energy has the much larger value
—(41233 + 35) MHz. This has recently
been verified to an accuracy of +45 MHz
(£0.1%) from the total 1s*'S-1s2p 'P tran-
sition frequency (Eikema et al., 1996).

In summary, the results in Table 2 pro-
vide a firm foundation of nonrelativistic en-
ergies upon which higher-order corrections
can be built and compared with experiment.
Further improvements in the QED part of
the theory remain an important challenge for
the future.

3.3.5 Extensions to More Complex
Systems Fully correlated variational calcu-
lations of the type described in the previous
section are difficult to extend to systems
more complex than helium because of the
rapid increase in the number of terms re-
quired. For an atom containing K electrons,
there are K single-particle radial distances r,
and K(K — 1)/2 interparticle distances r,, for
a total of P = K(K + 1)/2 radial coordinates.
If all combinations of powers of the 7, and r,,
are included in the basis set such that the
sum of powers is = [cf. Eq. (123)], then the
generalization of Eq. (124) for the number of
terms is

_ @+ 1)@ +2) (24 P)
P! ‘

N (126)

Since the time required to calculate a single
eigenvector increases in proportion to N3,
the overall complexity of the calculation in-
creases roughly in proportion to

6(2 + P)! P
[P!(.Q + 3)!] (127)
relative to helium with the same (.

As an example, from Table 3, an accuracy
of 107! a.u. for the ground state of helium
requires 2 = 8. A similar accuracy for lith-
ium with K = 3 and P = 6 therefore re-
quires about 6000 times the computer re-
sources, and for beryllium with K = 4 and P
= 10, the factor from expression (127) be-
comes 1.4 x 10",

Because of this rapid increase of complex-
ity with the number of electrons, fully corre-
lated calculations of spectroscopic accuracy
have only been extended as far as lithium
(see Yan and Drake, 1995; Yan et al, 1996;
and earlier references therein). The pattern
of convergence for the ground state is simi-
lar to that shown in Table 3. The results up
to £2 = 8 yield the extrapolated nonrelativis-
tic eigenvalue

E(1s?2s* S) = —7.478 060 323 10(31) a.u.
(128)

The uncertainty of £3 x 107'° is about
what one would expect from Table 3 for 2
= 8.

For systems more complex than lithium,
one must resort to other methods of calcu-
lation that can be extended to arbitrarily
complex systems, but typically having much
lower accuracy (+107° a.u. or more). These
methods include multiconfiguration Hartree-
Fock (MCHF), configuration-interaction (CI),
many-body perturbation-theory, finite-ele-
ment, diffusion Monte Carlo (DMC), and var-
iational Monte Carlo (VMC) techniques. The
MCHF and CI methods are similar in con-
cept to the fully correlated variational
method described in Sec. 3.3.4, except that
the members of the basis set X, are con-
structed from antisymmetrized products of
one-electron orbitals corresponding to defi-
nite electronic configurations. The effect is
analogous to including only the even powers
of r; as shown in Table 1, and so conver-
gence with increasing angular momentum of
the individual electrons is slow. Recently,
Goldman (1994) has devised a modified CI
method involving extrapolation procedures
to overcome this problem, at least for simple
systems. For recent work on finite-element
and many-body perturbation-theory meth-



